A molecular neuromorphic network device consisting of single-walled carbon nanotubes complexed with polyoxometalate

被引:269
作者
Tanaka, Hirofumi [1 ]
Akai-Kasaya, Megumi [2 ]
TermehYousefi, Amin [1 ]
Hong, Liu [3 ,5 ]
Fu, Lingxiang [1 ]
Tamukoh, Hakaru [1 ]
Tanaka, Daisuke [3 ,6 ]
Asai, Tetsuya [4 ]
Ogawa, Takuji [3 ]
机构
[1] Kyushu Inst Technol Kyutech, Grad Sch Life Sci & Syst Engn, 2-4 Hibikino, Kitakyushu, Fukuoka 8080196, Japan
[2] Osaka Univ, Grad Sch Engn, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
[3] Osaka Univ, Grad Sch Sci, 1-1 Machikaneyama, Toyonaka, Osaka 5600043, Japan
[4] Hokkaido Univ, Grad Sch Informat Sci & Technol, Kita Ku, Kita 14,Nishi 9, Sapporo, Hokkaido 0600814, Japan
[5] Jiangnan Univ, Sch Chem & Mat Engn, 1800 Lihu Ave, Wuxi 214112, Peoples R China
[6] Kwansei Gakuin Univ, Sch Sci & Technol, 2-1 Gakuen, Sanda, Hyogo 6691337, Japan
关键词
ROOM-TEMPERATURE; MICROSCOPY; RESISTANCE; CHEMISTRY; DYNAMICS; FIELD; ACID;
D O I
10.1038/s41467-018-04886-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In contrast to AI hardware, neuromorphic hardware is based on neuroscience, wherein constructing both spiking neurons and their dense and complex networks is essential to obtain intelligent abilities. However, the integration density of present neuromorphic devices is much less than that of human brains. In this report, we present molecular neuromorphic devices, composed of a dynamic and extremely dense network of single-walled carbon nanotubes (SWNTs) complexed with polyoxometalate (POM). We show experimentally that the SWNT/POM network generates spontaneous spikes and noise. We propose electron-cascading models of the network consisting of heterogeneous molecular junctions that yields results in good agreement with the experimental results. Rudimentary learning ability of the network is illustrated by introducing reservoir computing, which utilises spiking dynamics and a certain degree of network complexity. These results indicate the possibility that complex functional networks can be constructed using molecular devices, and contribute to the development of neuromorphic devices.
引用
收藏
页数:7
相关论文
共 36 条
[1]   Building functional networks of spiking model neurons [J].
Abbott, L. F. ;
DePasquale, Brian ;
Memmesheimer, Raoul-Martin .
NATURE NEUROSCIENCE, 2016, 19 (03) :350-355
[2]   Information processing using a single dynamical node as complex system [J].
Appeltant, L. ;
Soriano, M. C. ;
Van der Sande, G. ;
Danckaert, J. ;
Massar, S. ;
Dambre, J. ;
Schrauwen, B. ;
Mirasso, C. R. ;
Fischer, I. .
NATURE COMMUNICATIONS, 2011, 2
[3]   Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks [J].
Chen, Yu-Hsin ;
Emer, Joel ;
Sze, Vivienne .
2016 ACM/IEEE 43RD ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA), 2016, :367-379
[4]   DaDianNao: A Machine-Learning Supercomputer [J].
Chen, Yunji ;
Luo, Tao ;
Liu, Shaoli ;
Zhang, Shijin ;
He, Liqiang ;
Wang, Jia ;
Li, Ling ;
Chen, Tianshi ;
Xu, Zhiwei ;
Sun, Ninghui ;
Temam, Olivier .
2014 47TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), 2014, :609-622
[5]   1/f noise in carbon nanotubes [J].
Collins, PG ;
Fuhrer, MS ;
Zettl, A .
APPLIED PHYSICS LETTERS, 2000, 76 (07) :894-896
[6]   Single walled carbon nanotube-based stochastic resonance device with molecular self-noise source [J].
Fujii, Hayato ;
Setiadi, Agung ;
Kuwahara, Yuji ;
Akai-Kasaya, Megumi .
APPLIED PHYSICS LETTERS, 2017, 111 (13)
[7]   A rare structural characterisation of the phosphomolybdate lacunary anion, [PMo11O39]7-.: Crystal structures of the Ln(III) complexes, (NH4)11[Ln(PMo11O39)2]•16H2O (Ln = CeIII, SmIII, DyIII or LuIII) [J].
Gaunt, AJ ;
May, I ;
Sarsfield, MJ ;
Collison, D ;
Helliwell, M ;
Denniss, IS .
DALTON TRANSACTIONS, 2003, (13) :2767-2771
[8]   Using phosphomolybdic acid (H3PMo12O40) to efficiently enhance the electrocatalytic activity and CO-tolerance of platinum nanoparticles supported on multi-walled carbon nanotubes catalyst in acidic medium [J].
Guo, Xun ;
Guo, Dao-Jun ;
Wang, Jian-She ;
Qiu, Xin-Ping ;
Chen, Li-Quan ;
Zhu, Wen-Tao .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2010, 638 (01) :167-172
[9]   Mixed Signal Learning by Spike Correlation Propagation in Feedback Inhibitory Circuits [J].
Hiratani, Naoki ;
Fukai, Tomoki .
PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (04)
[10]   Rectification direction inversion in a phosphododecamolybdic acid/single-walled carbon nanotube junction [J].
Hong, Liu ;
Tanaka, Hirofumi ;
Ogawa, Takuji .
JOURNAL OF MATERIALS CHEMISTRY C, 2013, 1 (06) :1137-1143