A High-Performance Asymmetric Supercapacitor Based on Tungsten Oxide Nanoplates and Highly Reduced Graphene Oxide Electrodes

被引:62
|
作者
Ashraf, Muhammad [1 ]
Shah, Syed Shaheen [2 ,4 ]
Khan, Ibrahim [3 ]
Aziz, Md. Abdul [4 ]
Ullah, Nisar [1 ]
Khan, Mujeeb [5 ]
Adil, Syed Farooq [5 ]
Liaqat, Zainab [6 ]
Usman, Muhammad [4 ]
Tremel, Wolfgang [6 ]
Tahir, Muhammad Nawaz [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Chem Dept, Dhahran 31261, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Phys Dept, Dhahran 31261, Saudi Arabia
[3] King Fahd Univ Petr & Minerals, Ctr Integrat Petr Res, Dhahran 31261, Saudi Arabia
[4] King Fahd Univ Petr & Minerals Dhahran, Ctr Res Excellence Nanotechnol, Dhahran 31262, Saudi Arabia
[5] King Saud Univ, Coll Sci, Dept Chem, POB 2455, Riyadh 11451, Saudi Arabia
[6] Johannes Gutenberg Univ Mainz, Inst Anorgan Chem & Analyt Chem, Duesbergweg 10-14, D-55128 Mainz, Germany
关键词
electrochemistry; energy storage; high energy density; highly reduced graphene oxide; supercapacitors;
D O I
10.1002/chem.202005156
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tungsten oxide/graphene hybrid materials are attractive semiconductors for energy-related applications. Herein, we report an asymmetric supercapacitor (ASC, HRG//m-WO3 ASC), fabricated from monoclinic tungsten oxide (m-WO3) nanoplates as a negative electrode and highly reduced graphene oxide (HRG) as a positive electrode material. The supercapacitor performance of the prepared electrodes was evaluated in an aqueous electrolyte (1 m H2SO4) using three- and two-electrode systems. The HRG//m-WO3 ASC exhibits a maximum specific capacitance of 389 F g(-1) at a current density of 0.5 A g(-1), with an associated high energy density of 93 Wh kg(-1) at a power density of 500 W kg(-1) in a wide 1.6 V operating potential window. In addition, the HRG//m-WO3 ASC displays long-term cycling stability, maintaining 92 % of the original specific capacitance after 5000 galvanostatic charge-discharge cycles. The m-WO3 nanoplates were prepared hydrothermally while HRG was synthesized by a modified Hummers method.
引用
收藏
页码:6973 / 6984
页数:12
相关论文
共 50 条
  • [31] Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes
    Zhang, Kai
    Mao, Lu
    Zhang, Li Li
    Chan, Hardy Sze On
    Zhao, Xiu Song
    Wu, Jishan
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (20) : 7302 - 7307
  • [32] High-performance asymmetric supercapacitors based on reduced graphene oxide/polyaniline composite electrodes with sandwich-like structure
    Ma, Jun
    Tang, Shaochun
    Syed, Junaid Ali
    Su, Dongyun
    Meng, Xiangkang
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2018, 34 (07) : 1103 - 1109
  • [33] High-performance asymmetric supercapacitors based on reduced graphene oxide/polyaniline composite electrodes with sandwich-like structure
    Jun Ma
    Shaochun Tang
    Junaid Ali Syed
    Dongyun Su
    Xiangkang Meng
    Journal of Materials Science & Technology, 2018, 34 (07) : 1103 - 1109
  • [34] A high-performance graphene based asymmetric supercapacitor
    Bokhari, Syeda Wishal
    Siddique, Ahmad Hassan
    Singh, Harshpreet
    Hayat, Muhammad Dilawer
    Zhu, Shenmin
    Gao, Wei
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (1-3):
  • [35] Chemisynthesized tungsten oxide (WO3) electrodes for high-performance asymmetric supercapacitor application: effect of deposition time
    Patil, Sujata B.
    Nikam, Ranjit P.
    Lokhande, Chandrakant D.
    Patil, Raghunath S.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (28)
  • [36] Layered NiO/reduced graphene oxide composites by heterogeneous assembly with enhanced performance as high-performance asymmetric supercapacitor cathode
    Li, Qian
    Wei, Qiang
    Xie, Lijing
    Chen, Chengmeng
    Lu, Chunxiang
    Su, Fang-Yuan
    Zhou, Pucha
    RSC ADVANCES, 2016, 6 (52): : 46548 - 46557
  • [37] Fabrication of Co3O4-reduced graphene oxide scrolls for high-performance supercapacitor electrodes
    Zhou, Weiwei
    Liu, Jinping
    Chen, Tao
    Tan, Kim Seng
    Jia, Xingtao
    Luo, Zhiqiang
    Cong, Chunxiao
    Yang, Huanping
    Li, Chang Ming
    Yu, Ting
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (32) : 14462 - 14465
  • [38] Chemisynthesized tungsten oxide (WO3) electrodes for high-performance asymmetric supercapacitor application: effect of deposition time
    Sujata B. Patil
    Ranjit P. Nikam
    Chandrakant D. Lokhande
    Raghunath S. Patil
    Journal of Materials Science: Materials in Electronics, 2023, 34
  • [39] Rational design of reduced graphene oxide for superior performance of supercapacitor electrodes
    Rasul, S.
    Alazmi, A.
    Jaouen, K.
    Hedhili, M. N.
    Costa, P. M. F. J.
    CARBON, 2017, 111 : 774 - 781
  • [40] Highly porous and capacitive copper oxide nanowire/graphene hybrid carbon nanostructure for high-performance supercapacitor electrodes
    Van Hoang Luan
    Han, Jong Hun
    Kang, Hyun Wook
    Lee, Wonoh
    COMPOSITES PART B-ENGINEERING, 2019, 178