Above-room-temperature giant thermal conductivity switching in spintronic multilayers

被引:33
作者
Nakayama, Hiroyasu [1 ]
Xu, Bin [2 ]
Iwamoto, Sotaro [2 ]
Yamamoto, Kaoru [1 ]
Iguchi, Ryo [1 ]
Miura, Asuka [1 ]
Hirai, Takamasa [1 ]
Miura, Yoshio [1 ]
Sakuraba, Yuya [1 ,3 ]
Shiomi, Junichiro [2 ]
Uchida, Ken-ichi [1 ,2 ,4 ,5 ]
机构
[1] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan
[2] Univ Tokyo, Dept Mech Engn, Tokyo 1138656, Japan
[3] Japan Sci & Technol Agcy, PRESTO, Saitama 3320012, Japan
[4] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[5] Tohoku Univ, Ctr Spintron Res Network, Sendai, Miyagi 9808577, Japan
关键词
HEAT-FLOW; SPIN;
D O I
10.1063/5.0032531
中图分类号
O59 [应用物理学];
学科分类号
摘要
Thermal switching provides an effective way for active heat flow control, which has recently attracted increasing attention in terms of nanoscale thermal management technologies. In magnetic and spintronic materials, the thermal conductivity depends on the magnetization configuration: this is the magnetothermal resistance effect. Here, we show that an epitaxial Cu/Co50Fe50 multilayer film exhibits giant magnetic-field-induced modulation of the cross-plane thermal conductivity. The magnetothermal resistance ratio for the Cu/Co50Fe50 multilayer reaches 150% at room temperature, which is much larger than the previous record high. Although the ratio decreases with increasing the temperature, the giant magnetothermal resistance effect of similar to 100% still appears up to 400K. The magnetic field dependence of the thermal conductivity of the Cu/Co50Fe50 multilayer was observed to be about twice greater than that of the cross-plane electrical conductivity. The observation of the giant magnetothermal resistance effect clarifies the potential of spintronic multilayers as thermal switching devices.
引用
收藏
页数:6
相关论文
共 44 条
[1]  
Bauer GEW, 2012, NAT MATER, V11, P391, DOI [10.1038/nmat3301, 10.1038/NMAT3301]
[2]   Magnon thermal mean free path in yttrium iron garnet [J].
Boona, Stephen R. ;
Heremans, Joseph P. .
PHYSICAL REVIEW B, 2014, 90 (06)
[3]   Spin caloritronics [J].
Boona, Stephen R. ;
Myers, Roberto C. ;
Heremans, Joseph P. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (03) :885-910
[4]   Analysis of heat flow in layered structures for time-domain thermoreflectance [J].
Cahill, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) :5119-5122
[5]   Electrochemically tunable thermal conductivity of lithium cobalt oxide [J].
Cho, Jiung ;
Losego, Mark D. ;
Zhang, Hui Gang ;
Kim, Honggyu ;
Zuo, Jianmin ;
Petrov, Ivan ;
Cahill, David G. ;
Braun, Paul V. .
NATURE COMMUNICATIONS, 2014, 5
[6]   Magnon detection using a ferroic collinear multilayer spin valve [J].
Cramer, Joel ;
Fuhrmann, Felix ;
Ritzmann, Ulrike ;
Gall, Vanessa ;
Niizeki, Tomohiko ;
Ramos, Rafael ;
Qiu, Zhiyong ;
Hou, Dazhi ;
Kikkawa, Takashi ;
Sinova, Jairo ;
Nowak, Ulrich ;
Saitoh, Eiji ;
Klaeui, Mathias .
NATURE COMMUNICATIONS, 2018, 9
[7]  
Cullity BD., 1972, Introduction to Magnetic Materials
[8]   Spin heat accumulation and spin-dependent temperatures in nanopillar spin valves [J].
Dejene, F. K. ;
Flipse, J. ;
Bauer, G. E. W. ;
van Wees, B. J. .
NATURE PHYSICS, 2013, 9 (10) :635-638
[9]   GIANT MAGNETORESISTANCE IN SOFT FERROMAGNETIC MULTILAYERS [J].
DIENY, B ;
SPERIOSU, VS ;
PARKIN, SSP ;
GURNEY, BA ;
WILHOIT, DR ;
MAURI, D .
PHYSICAL REVIEW B, 1991, 43 (01) :1297-1300
[10]   Band match enhanced current-in-plane giant magnetoresistance in epitaxial Co50Fe50/Cu multilayers with metastable bcc-Cu spacer [J].
Fathoni, Kresna B. ;
Sakuraba, Yuya ;
Sasaki, Taisuke ;
Miura, Yoshio ;
Jung, Jin W. ;
Nakatani, Tomoya ;
Hono, Kazuhiro .
APL MATERIALS, 2019, 7 (11)