Particle trapping by an external body force in the limit of large Peclet number: applications to magnetic targeting in the blood flow

被引:6
|
作者
Richardson, G. [1 ]
Kaouri, K. [2 ]
Byrne, H. M. [2 ]
机构
[1] Univ Southampton, Sch Math, Southampton SO17 1BJ, Hants, England
[2] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
基金
英国生物技术与生命科学研究理事会;
关键词
SHEAR-FLOW; NANOPARTICLES; DIFFUSION; TRANSPORT; DRAG; WALL;
D O I
10.1017/S0956792509990155
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the technology of magnetically targeted drug and gene delivery, in which a magnetic field is used to direct magnetic carrier particles from the circulation to a target site, we develop a continuum model For the motion of particles (magnetic carriers) Subject to an external body force (magnetic field) in a flow of it concentrated suspension of it species of neutrally buoyant particles (blood) An advection-diffusion equation describes the evolution of the carrier particles as they advect in the flow under the action of an external body force, and diffuse as it result of random interactions with the suspension of neutrally buoyant particles (shear-induced diffusion). The model is analysed for the case in which there is steady Poiseuille flow in it cylindrical vessel, the diffusive effects arc weak and there is weak carrier uptake along the walls of the vessel. The method of matched asymptotic expansions is used to show that carriers are concentrated in it boundary layer along the vessel wall and, further, that there is it carrier flux along this layer which results in a sub-layer, along one side of the vessel, in which carriers are even more highly concentrated. Three distinguished limits are identified they correspond to cases for which (i) the force is sufficiently weak that most particles move through the vessel without entering the boundary layers along the walls of (lie vessel and (ii) and (m) to a force which is sufficiently strong that it significant fraction of the particles enter the boundary layers and, depending upon the carrier absorption from the vessel walls, there is insignificant/significant axial carrier flux in these layers.
引用
收藏
页码:77 / 107
页数:31
相关论文
共 9 条