Cycles on arithmetic surfaces

被引:9
作者
Abbes, A [1 ]
机构
[1] Univ Paris 13, Inst Galilee, CNRS, UMR 7539, F-93430 Villetaneuse, France
关键词
arithmetic surfaces; localized intersection theory; bivariant classes; Lefschetz fixed point formula; Artin's representations;
D O I
10.1023/A:1001822419774
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a localized intersection theory for arithmetic schemes on the model of Fulton's intersection theory. We prove a Lefschetz fixed point formula for arithmetic surfaces, and give an application to a conjecture of Serre on the existence of Artin's representations for regular local rings of dimension 2 and unequal characteristic.
引用
收藏
页码:23 / 111
页数:89
相关论文
共 20 条
[1]  
[Anonymous], 1968, CORPS LOCAUX
[2]  
[Anonymous], 1971, TOPOLOGY
[4]   DE RHAM COHOMOLOGY AND CONDUCTORS OF CURVES [J].
BLOCH, S .
DUKE MATHEMATICAL JOURNAL, 1987, 54 (02) :295-308
[5]  
BLOCH S, 1987, P SYMP PURE MATH, V46, P421
[6]  
DELIGNE P, 1966, LECT NOTES MATH, V20, P404
[7]  
Deligne P, 1973, LECT NOTES MATH, V340
[8]  
Fulton W., 2013, INTERSECTION THEORY, DOI DOI 10.1007/978-3-662-02421-8
[10]  
KATO K, 1987, AM J MATH, V110, P49