Subadditivity of q-entropies for q>1

被引:60
作者
Audenaert, Koenraad M. R. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2PG, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1063/1.2771542
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
I prove a basic inequality for Schatten q-norms of quantum states on a finite-dimensional bipartite Hilbert space H-1 circle times H-2: 1+parallel to rho parallel to(q)>=parallel to Tr-1 rho parallel to(q)+parallel to Tr-2 rho parallel to(q). This leads to a proof-in the finite-dimensional case-of Raggio's conjecture [G. A. Raggio, J. Math. Phys. 36, 4785 (1995)] that the q-entropies S-q(rho)=(1-Tr[rho(q)])/(q-1) are subadditive for q>1; that is, for any state rho, S-q(rho) is not greater than the sum of the S-q of its reductions, S-q(rho)<= S-q(Tr-1 rho)+S-q(Tr-2 rho).
引用
收藏
页数:3
相关论文
共 5 条
[1]  
Bercovici H, 2005, MATH INEQUAL APPL, V8, P743
[2]  
Bhatia R., 2013, MATRIX ANAL
[3]   PROPERTIES OF Q-ENTROPIES [J].
RAGGIO, GA .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (09) :4785-4791
[4]   POSSIBLE GENERALIZATION OF BOLTZMANN-GIBBS STATISTICS [J].
TSALLIS, C .
JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (1-2) :479-487
[5]   GENERAL PROPERTIES OF ENTROPY [J].
WEHRL, A .
REVIEWS OF MODERN PHYSICS, 1978, 50 (02) :221-260