New Efficient Regression Method for Local AADT Estimation via SCAD Variable Selection

被引:5
|
作者
Yang, Bingduo [1 ,2 ]
Wang, Sheng-Guo [3 ]
Bao, Yuanlu [4 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Finance, Nanchang 330013, Peoples R China
[2] Univ N Carolina, Charlotte, NC 28223 USA
[3] Univ N Carolina, Lee Coll Engn, Charlotte, NC 28223 USA
[4] Univ Sci & Technol China, Dept Automat, Hefei 230026, Peoples R China
基金
美国国家科学基金会;
关键词
Annual average daily traffic (AADT); regression; satellite information; smoothly clipped absolute deviation penalty (SCAD); NONCONCAVE PENALIZED LIKELIHOOD; TRAFFIC FLOW; LASSO;
D O I
10.1109/TITS.2014.2318039
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper focuses on the estimation and variable selection for the local annual average daily traffic (AADT). The variable selection procedure by smoothly clipped absolute deviation penalty is proposed. It can simultaneously select significant variables and estimate unknown regression coefficients in one step. The estimation algorithm and the tuning parameters selection are presented. The data from Mecklenburg County, North Carolina, USA, in 2007 are used for demonstration with our proposed variable selection procedures. The results show that this penalized regression technology improves the local AADT estimation along with satellite information, and it outperforms some other benchmark models.
引用
收藏
页码:2726 / 2731
页数:6
相关论文
共 50 条
  • [21] An adaptive method of variable selection in regression
    O'Gorman, Thomas W.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2008, 37 (06) : 1129 - 1142
  • [22] A NONPARAMETRIC METHOD OF VARIABLE SELECTION FOR REGRESSION
    LUVALLE, MJ
    BIOMETRICS, 1983, 39 (04) : 1119 - 1119
  • [23] Weighted composite quantile estimation and variable selection method for censored regression model
    Tang, Linjun
    Zhou, Zhangong
    Wu, Changchun
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (03) : 653 - 663
  • [24] Sparse envelope model: efficient estimation and response variable selection in multivariate linear regression
    Su, Z.
    Zhu, G.
    Chen, X.
    Yang, Y.
    BIOMETRIKA, 2016, 103 (03) : 579 - 593
  • [25] An Efficient Elastic Net with Regression Coefficients Method for Variable Selection of Spectrum Data
    Liu, Wenya
    Li, Qi
    PLOS ONE, 2017, 12 (02):
  • [26] Modified check loss for efficient estimation via model selection in quantile regression
    Jung, Yoonsuh
    MacEachern, Steven N.
    Kim, Hang
    JOURNAL OF APPLIED STATISTICS, 2021, 48 (05) : 866 - 886
  • [27] Variable selection and coefficient estimation via composite quantile regression with randomly censored data
    Jiang, Rong
    Qian, Weimin
    Zhou, Zhangong
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (02) : 308 - 317
  • [28] GROUP VARIABLE SELECTION AND PARAMETER ESTIMATION VIA GROUP BERHU METHOD
    Liu, Jian-Wei
    Cui, Li-Peng
    Luo, Xiong-Lin
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 2, 2017, : 412 - 419
  • [29] SCAD-penalized quantile regression for high-dimensional data analysis and variable selection
    Amin, Muhammad
    Song, Lixin
    Thorlie, Milton Abdul
    Wang, Xiaoguang
    STATISTICA NEERLANDICA, 2015, 69 (03) : 212 - 235
  • [30] Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression
    Arslan, Olcay
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (06) : 1952 - 1965