Injection molded chips with integrated conducting polymer electrodes for electroporation of cells

被引:36
作者
Andresen, Kristian Odegaard [1 ]
Hansen, Morten [1 ]
Matschuk, Maria [1 ]
Jepsen, Soren Terpager [2 ]
Sorensen, Henrik Schiott [2 ]
Utko, Pawel [1 ]
Selmeczi, David [1 ]
Hansen, Thomas S. [1 ]
Larsen, Niels B. [1 ]
Rozlosnik, Noemi [1 ]
Taboryski, Rafael [1 ]
机构
[1] Tech Univ Denmark, Dept Micro & Nanotechnol, DTU Nanotech, DK-4000 Roskilde, Denmark
[2] Tech Univ Denmark, Dept Photon Engn, DTU Foton, DK-4000 Roskilde, Denmark
关键词
MICROFLUIDIC DEVICES; SMALL MOLECULES; CHANNEL; SINGLE; IMPEDANCE; DELIVERY; SYSTEMS; DNA;
D O I
10.1088/0960-1317/20/5/055010
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present the design-concept for an all polymer injection molded single use microfluidic device. The fabricated devices comprise integrated conducting polymer electrodes and Luer fitting ports to allow for liquid and electrical access. A case study of low voltage electroporation of biological cells in suspension is presented. The working principle of the electroporation device is based on a focusing of the electric field by means of a constriction in the flow channel for the cells. We demonstrate the use of AC voltage for electroporation by applying a 1 kHz, +/- 50 V square pulse train to the electrodes and show delivery of polynucleotide fluorescent dye in 46% of human acute monocytic leukemia cells passing the constriction.
引用
收藏
页数:9
相关论文
共 54 条
  • [1] Microfluidic devices for cellomics: a review
    Andersson, H
    van den Berg, A
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2003, 92 (03): : 315 - 325
  • [2] [Anonymous], 1986, 5941 ISO
  • [3] Upscaling and automation of electrophysiology: Toward high throughput screening in ion channel drug discovery
    Asmild, M
    Oswald, N
    Krzywkowski, KM
    Friis, S
    Jacobsen, RB
    Reuter, D
    Taboryski, R
    Kutchinsky, J
    Vestergaard, RK
    Schroder, RL
    Sorensen, CB
    Bech, M
    Korsgaard, MPG
    Willumsen, NJ
    [J]. RECEPTORS & CHANNELS, 2003, 9 (01) : 49 - 58
  • [4] BECKER EW, 1982, NATURWISSENSCHAFTEN, V69, P520, DOI 10.1007/BF00463495
  • [5] Polymer microfluidic devices
    Becker, H
    Locascio, LE
    [J]. TALANTA, 2002, 56 (02) : 267 - 287
  • [6] Polymer microfabrication technologies for microfluidic systems
    Becker, Holger
    Gaertner, Claudia
    [J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2008, 390 (01) : 89 - 111
  • [7] Micromolding of biochip devices designed with microchannels
    Chien, RD
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2006, 128 (02) : 238 - 247
  • [8] Go with the microflow
    Clayton, J
    [J]. NATURE METHODS, 2005, 2 (08) : 621 - 627
  • [9] MECHANISM OF ELECTRICAL BREAKDOWN IN MEMBRANES OF VALONIA-UTRICULARIS
    COSTER, HGL
    ZIMMERMANN, U
    [J]. JOURNAL OF MEMBRANE BIOLOGY, 1975, 22 (01) : 73 - 90
  • [10] Nantotechniques and approaches in biotechnology
    Curtis, A
    Wilkinson, C
    [J]. TRENDS IN BIOTECHNOLOGY, 2001, 19 (03) : 97 - 101