Fault Diagnosis Method of Reciprocating Compressor Based on Domain Adaptation under Multi-working Conditions

被引:2
|
作者
Zhang, Lijun [1 ]
Duan, Lixiang [2 ]
Hong, Xiaocui [2 ]
Zhang, Xinyun [2 ]
机构
[1] China Univ Petr, Coll Mech & Transportat Engn, 18 Fuxue Rd, Beijing, Peoples R China
[2] China Univ Petr, Coll Safety & Ocean Engn, 18 Fuxue Rd, Beijing, Peoples R China
来源
2021 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2021) | 2021年
基金
中国国家自然科学基金;
关键词
Reciprocating compressor; Fault diagnosis; Domain adaptation; Multi-working Condition; MK-MMD;
D O I
10.1109/ICMA52036.2021.9512625
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The complex structure and changeable working conditions of reciprocating compressor lead to the strong noise interference of collected monitoring data, the poor universality of diagnosis model and so on. A fault diagnosis method of reciprocating compressor based on domain adaptation is proposed in this paper to solve the above-mentioned problems. It breaks away from the assumption of the same distribution of source domain and target domain data in the traditional artificial intelligence algorithm. In addition, it contributes a new idea to the intelligent diagnosis of reciprocating compressor equipment. Firstly, the vibration signal is decomposed and reconstructed by CEEMDAN. Besides, in combination with wavelet transform, one-dimensional signal is converted into two-dimensional time-frequency image. Finally, a MK-MMD layer is added in front of the classifier for adaptation to the source domain and target domain, so as to realize fault diagnosis of multi-working conditions for the reciprocating compressor based on ResNet50. According to the experimental results, the combination of CEEMDAN and WT can be effective in reducing the noise-induced interference, and the time-frequency image contains rich information. In addition, the ResNet50-MK-MMD method is used for fault diagnosis under multi-working condition, with the average accuracy reaching above 97%.
引用
收藏
页码:588 / 593
页数:6
相关论文
共 50 条
  • [21] CROSS-WORKING CONDITIONS FAULT DIAGNOSIS OF ROTATING MACHINERY BASED ON PARTIAL DOMAIN ADAPTATION
    Ma T.
    Sun L.
    Han B.
    Shi Y.
    Deng A.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (06): : 479 - 486
  • [22] Using working progress simulation for fault diagnosis of reciprocating compressor
    Liu, BY
    Liu, ML
    Chang, HB
    PROGRESS IN SAFETY SCIENCE AND TECHNOLOGY, VOL 4, PTS A and B, 2004, 4 : 1970 - 1974
  • [23] A Multisource Domain Adaptation Network for Process Fault Diagnosis Under Different Working Conditions
    Li, Shijin
    Yu, Jianbo
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (06) : 6272 - 6283
  • [24] Domain Adaptation-Based Transfer Learning for Gear Fault Diagnosis Under Varying Working Conditions
    Chen, Chao
    Shen, Fei
    Xu, Jiawen
    Yan, Ruqiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [25] Domain adaptation network base on contrastive learning for bearings fault diagnosis under variable working conditions
    An, Yiyao
    Zhang, Ke
    Chai, Yi
    Liu, Qie
    Huang, Xinghua
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 212
  • [26] Fault diagnosis of rolling bearings under variable conditions based on unsupervised domain adaptation method
    Zhong, Jianhua
    Lin, Cong
    Gao, Yang
    Zhong, Jianfeng
    Zhong, Shuncong
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 215
  • [27] Fault Diagnosis Method Based on AUPLMD and RTSMWPE for a Reciprocating Compressor Valve
    Song, Meiping
    Wang, Jindong
    Zhao, Haiyang
    Wang, Xulei
    ENTROPY, 2022, 24 (10)
  • [28] Fault diagnosis of reciprocating compressor cylinder based on EMD coherence method
    王雷
    赵俊龙
    王奉涛
    马孝江
    Journal of Harbin Institute of Technology(New series), 2012, (01) : 101 - 106
  • [29] Deep domain adaptation and its application in fault diagnosis across working conditions
    Yuan Z.
    Dong R.
    Zhang L.
    Duan L.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (12): : 281 - 288
  • [30] Research on Fault Diagnosis Method of Reciprocating Compressor Based on RSSD and Optimized Parameter RCMDE
    Lyu, Fengxia
    Ding, Xueping
    Li, Qianqian
    Chen, Suzhen
    Zhang, Siyi
    Huang, Xinyue
    Huang, Wenqing
    Applied Sciences (Switzerland), 2024, 14 (24):