Low complexity bit serial systolic multipliers over GF(2m) for three classes of finite fields

被引:0
作者
Kwon, S [1 ]
机构
[1] Sungkyunkwan Univ, Inst Basic Sci, Suwon 440746, South Korea
[2] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
来源
INFORMATION AND COMMUNICATIONS SECURITY, PROCEEDINGS | 2002年 / 2513卷
关键词
finite field; basis; systolic multiplier; all one polynomial;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
By using a standard polynomial basis, we present a low complexity bit serial systolic multiplier over GF(2(m)) when there exist the following types of irreducible polynomials, x(m)+x(m-1) + 1, x(m)+Sigma(i=0)(m-2) x(i) and Sigma(i=0)(m) x(i), an all one polynomial. When compared with most of other bit serial systolic multipliers, our multiplier needs two latches fewer in each basic cell. Therefore, the hardware complexity of our systolic array is approximately 20 percent reduced from other existing multipliers.
引用
收藏
页码:209 / 216
页数:8
相关论文
共 16 条
[1]   BIT-SERIAL REED-SOLOMON ENCODERS [J].
BERLEKAMP, ER .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (06) :869-874
[2]   NEW BIT-SERIAL SYSTOLIC MULTIPLIER FOR GF(2M) USING IRREDUCIBLE TRINOMIALS [J].
DIAB, M ;
POLI, A .
ELECTRONICS LETTERS, 1991, 27 (13) :1183-1184
[3]   Dual basis systolic multipliers for GF(2(m)) [J].
Fenn, STJ ;
Benaissa, M ;
Taylor, D .
IEE PROCEEDINGS-COMPUTERS AND DIGITAL TECHNIQUES, 1997, 144 (01) :43-46
[4]   A MODIFIED MASSEY-OMURA PARALLEL MULTIPLIER FOR A CLASS OF FINITE-FIELDS [J].
HASAN, MA ;
WANG, MZ ;
BHARGAVA, VK .
IEEE TRANSACTIONS ON COMPUTERS, 1993, 42 (10) :1278-1280
[5]   STRUCTURE OF PARALLEL MULTIPLIERS FOR A CLASS OF FIELDS GF(2M) [J].
ITOH, T ;
TSUJII, S .
INFORMATION AND COMPUTATION, 1989, 83 (01) :21-40
[6]   Efficient semisystolic architectures for finite-field arithmetic [J].
Jain, SK ;
Song, LL ;
Parhi, KK .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 1998, 6 (01) :101-113
[7]   Bit-parallel systolic multipliers for GF(2m) fields defined by all-one and equally spaced polynomials [J].
Lee, CY ;
Lu, EH ;
Lee, JY .
IEEE TRANSACTIONS ON COMPUTERS, 2001, 50 (05) :385-393
[8]  
Menezes A. J., 1993, APPL FINITE FIELDS
[9]   Efficient multiplier architectures for Galois fields GF(24n) [J].
Paar, C ;
Fleischmann, P ;
Roelse, P .
IEEE TRANSACTIONS ON COMPUTERS, 1998, 47 (02) :162-170
[10]   ON BIT-SERIAL MULTIPLICATION AND DUAL BASES IN GF(2M) [J].
STINSON, DR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (06) :1733-1736