Hardy's theorem for the n-dimensional Euclidean motion group

被引:28
作者
Sundari, M [1 ]
机构
[1] Indian Stat Inst, Div Math & Stat, Bangalore 560059, Karnataka, India
关键词
uncertainty principle; Fourier transform pairs; very rapidly decreasing; Euclidean motion group;
D O I
10.1090/S0002-9939-98-04144-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An uncertainty principle; due to Hardy, for Fourier transform pairs on R says that if the function f is "very rapidly decreasing", then the Fourier transform cannot also be "very rapidly decreasing" unless S is identically zero. In this paper we state and prove an analogue of Hardy's theorem for the n-dimensional Euclidean motion group.
引用
收藏
页码:1199 / 1204
页数:6
相关论文
共 10 条
[1]  
COWLING M, 1983, LECT NOTES, V992
[2]  
Dym H, 1972, Fourier Series and Integrals
[3]  
FOLLAND GB, UNPUB LECT NOTES
[4]  
GROSS KI, 1972, SYMMETRIC SPACES, P119
[5]   A UNIQUENESS THEOREM OF BEURLING FOR FOURIER-TRANSFORM PAIRS [J].
HORMANDER, L .
ARKIV FOR MATEMATIK, 1991, 29 (02) :237-240
[6]  
PATI V, 1996, J FOURIR ANAL APPL, V2
[7]   An analogue of Hardy's theorem for very rapidly decreasing functions on semi-simple Lie groups [J].
Sitaram, A ;
Sundari, M .
PACIFIC JOURNAL OF MATHEMATICS, 1997, 177 (01) :187-200
[8]   UNCERTAINTY PRINCIPLES ON CERTAIN LIE-GROUPS [J].
SITARAM, A ;
SUNDARI, M ;
THANGAVELU, S .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1995, 105 (02) :135-151
[9]  
Sugiura M., 1975, UNITARY REPRESENTATI
[10]  
Titchmarsh E. C., 1986, Introduction to the Theory of Fourier Integrals