PbS colloidal quantum dot/ZnO-based bulk-heterojunction solar cells with high stability under continuous light soaking

被引:23
作者
Wang, Haibin [1 ]
Kubo, Takaya [1 ]
Nakazaki, Jotaro [1 ]
Segawa, Hiroshi [1 ]
机构
[1] Univ Tokyo, Res Ctr Adv Sci & Technol, Meguro Ku, Tokyo 1538904, Japan
来源
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS | 2014年 / 8卷 / 12期
基金
日本科学技术振兴机构;
关键词
bulk heterojunction solar cells; quantum dots; ZnO; nanowires; PbS; AIR; PHOTOVOLTAICS; NANOPARTICLES; PERFORMANCE; EFFICIENCY;
D O I
10.1002/pssr.201409461
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
PbS colloidal quantum dot (CQD)-based depleted bulk-heterojunction solar cells were constructed, using the 1.2 mu m thick nanowire array infiltrated with PbS QDs bearing Br ligands. The long-term stability tests were performed on the solar cells without encapsulation in air under continuous light soaking using a Xe lamp with an AM1.5G filter (100 mW cm(-2)). Time course of solar cell performances during the tests showed two time periods with distinct behavior, that is, the initial transient time period and the relatively stable region following it. The power conversion efficiency was found to keep approximately 90% of the initial value at the end of the 3000 h light soaking test. The stability tests suggest that the PbS surface modification or passivation reactions play an important role in achieving such a high stability, and demonstrate that PbS CQD/ZnO nanowire array-based depleted bulk-heterojunction solar cells are highly stable. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:961 / 965
页数:5
相关论文
共 18 条
  • [1] Chuang CHM, 2014, NAT MATER, V13, P796, DOI [10.1038/nmat3984, 10.1038/NMAT3984]
  • [2] Chemisorption effects on colloidal lead nanoparticles
    Henglein, A
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (43): : 9302 - 9305
  • [3] Hybrid nanorod-polymer solar cells
    Huynh, WU
    Dittmer, JJ
    Alivisatos, AP
    [J]. SCIENCE, 2002, 295 (5564) : 2425 - 2427
  • [4] Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier
    Ip, Alexander H.
    Labelle, Andre J.
    Sargent, Edward H.
    [J]. APPLIED PHYSICS LETTERS, 2013, 103 (26)
  • [5] Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics
    Kamat, Prashant V.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (06): : 908 - 918
  • [6] Solution processed photovoltaic devices with 2% infrared monochromatic power conversion efficiency: Performance optimization and oxide formation
    Klem, Ethan J. D.
    MacNeil, Dean D.
    Levina, Larissa
    Sargent, Edward H.
    [J]. ADVANCED MATERIALS, 2008, 20 (18) : 3433 - +
  • [7] The Architecture of Colloidal Quantum Dot Solar Cells: Materials to Devices
    Kramer, Illan J.
    Sargent, Edward H.
    [J]. CHEMICAL REVIEWS, 2014, 114 (01) : 863 - 882
  • [8] Schottky Solar Cells Based on Colloidal Nanocrystal Films
    Luther, Joseph M.
    Law, Matt
    Beard, Matthew C.
    Song, Qing
    Reese, Matthew O.
    Ellingson, Randy J.
    Nozik, Arthur J.
    [J]. NANO LETTERS, 2008, 8 (10) : 3488 - 3492
  • [9] Stability Assessment on a 3% Bilayer PbS/ZnO Quantum Dot Heterojunction Solar Cell
    Luther, Joseph M.
    Gao, Jianbo
    Lloyd, Matthew T.
    Semonin, Octavi E.
    Beard, Matthew C.
    Nozik, Arthur J.
    [J]. ADVANCED MATERIALS, 2010, 22 (33) : 3704 - +
  • [10] Ning ZJ, 2014, NAT MATER, V13, P822, DOI [10.1038/NMAT4007, 10.1038/nmat4007]