PT-breaking threshold in spatially asymmetric Aubry-Andre and Harper models: Hidden symmetry and topological states

被引:70
作者
Harter, Andrew K. [1 ]
Lee, Tony E. [1 ]
Joglekar, Yogesh N. [1 ]
机构
[1] Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA
基金
美国国家科学基金会;
关键词
NON-HERMITIAN HAMILTONIANS; BEAM-PROPAGATION METHOD; PARITY-TIME SYMMETRY; PHOTONIC LATTICES; REAL SPECTRA; SOLITONS; LASER;
D O I
10.1103/PhysRevA.93.062101
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Aubry-Andre-Harper lattice models, characterized by a reflection-asymmetric sinusoidally varying nearest-neighbor tunneling profile, are well known for their topological properties. We consider the fate of such models in the presence of balanced gain and loss potentials +/- i gamma located at reflection-symmetric sites. We predict that these models have a finite PT-breaking threshold only for specific locations of the gain-loss potential and uncover a hidden symmetry that is instrumental to the finite threshold strength. We also show that the topological edge states remain robust in the PT-symmetry-broken phase. Our predictions substantially broaden the possible experimental realizations of a PT-symmetric system.
引用
收藏
页数:7
相关论文
共 55 条
[51]   Topological phase in a non-Hermitian PT symmetric system [J].
Yuce, C. .
PHYSICS LETTERS A, 2015, 379 (18-19) :1213-1218
[52]   Observation of a Topological Transition in the Bulk of a Non-Hermitian System [J].
Zeuner, Julia M. ;
Rechtsman, Mikael C. ;
Plotnik, Yonatan ;
Lumer, Yaakov ;
Nolte, Stefan ;
Rudner, Mark S. ;
Segev, Mordechai ;
Szameit, Alexander .
PHYSICAL REVIEW LETTERS, 2015, 115 (04)
[53]   PT symmetry in the non-Hermitian Su-Schrieffer-Heeger model with complex boundary potentials [J].
Zhu, Baogang ;
Lu, Rong ;
Chen, Shu .
PHYSICAL REVIEW A, 2014, 89 (06)
[54]   Solvable non-Hermitian discrete square well with closed-form physical inner product [J].
Znojil, Miloslav .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (43)
[55]   Gegenbauer-solvable quantum chain model [J].
Znojil, Miloslav .
PHYSICAL REVIEW A, 2010, 82 (05)