PT-breaking threshold in spatially asymmetric Aubry-Andre and Harper models: Hidden symmetry and topological states

被引:70
作者
Harter, Andrew K. [1 ]
Lee, Tony E. [1 ]
Joglekar, Yogesh N. [1 ]
机构
[1] Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA
基金
美国国家科学基金会;
关键词
NON-HERMITIAN HAMILTONIANS; BEAM-PROPAGATION METHOD; PARITY-TIME SYMMETRY; PHOTONIC LATTICES; REAL SPECTRA; SOLITONS; LASER;
D O I
10.1103/PhysRevA.93.062101
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Aubry-Andre-Harper lattice models, characterized by a reflection-asymmetric sinusoidally varying nearest-neighbor tunneling profile, are well known for their topological properties. We consider the fate of such models in the presence of balanced gain and loss potentials +/- i gamma located at reflection-symmetric sites. We predict that these models have a finite PT-breaking threshold only for specific locations of the gain-loss potential and uncover a hidden symmetry that is instrumental to the finite threshold strength. We also show that the topological edge states remain robust in the PT-symmetry-broken phase. Our predictions substantially broaden the possible experimental realizations of a PT-symmetric system.
引用
收藏
页数:7
相关论文
共 55 条
[1]  
Aubry S., 1980, Annals of the Israel Physical Society, V3, P133
[2]   Faithful communication Hamiltonian in photonic lattices [J].
Bellec, Matthieu ;
Nikolopoulos, Georgios M. ;
Tzortzakis, Stelios .
OPTICS LETTERS, 2012, 37 (21) :4504-4506
[3]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[4]   PT symmetry and necessary and sufficient conditions for the reality of energy eigenvalues [J].
Bender, Carl M. ;
Mannheim, Philip D. .
PHYSICS LETTERS A, 2010, 374 (15-16) :1616-1620
[5]   Complex extension of quantum mechanics [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW LETTERS, 2002, 89 (27)
[6]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[7]   Generalized PT symmetry and real spectra [J].
Bender, CM ;
Berry, MV ;
Mandilara, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (31) :L467-L471
[8]   Exponentially Fragile PT Symmetry in Lattices with Localized Eigenmodes [J].
Bendix, Oliver ;
Fleischmann, Ragnar ;
Kottos, Tsampikos ;
Shapiro, Boris .
PHYSICAL REVIEW LETTERS, 2009, 103 (03)
[9]   Quantum communication through an unmodulated spin chain [J].
Bose, S .
PHYSICAL REVIEW LETTERS, 2003, 91 (20)
[10]   Reversing the pump dependence of a laser at an exceptional point [J].
Brandstetter, M. ;
Liertzer, M. ;
Deutsch, C. ;
Klang, P. ;
Schoeberl, J. ;
Tuereci, H. E. ;
Strasser, G. ;
Unterrainer, K. ;
Rotter, S. .
NATURE COMMUNICATIONS, 2014, 5