Joint Device Association, Resource Allocation, and Computation Offloading in Ultradense Multidevice and Multitask IoT Networks

被引:27
作者
Zhou, Tianqing [1 ]
Yue, Yali [1 ]
Qin, Dong [2 ]
Nie, Xuefang [1 ]
Li, Xuan [1 ]
Li, Chunguo [3 ]
机构
[1] East China Jiaotong Univ, Sch Informat Engn, Nanchang 330013, Jiangxi, Peoples R China
[2] Nanchang Univ, Sch Informat Engn, Nanchang 330031, Jiangxi, Peoples R China
[3] Southeast Univ, Sch Informat Sci & Engn, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Task analysis; Energy consumption; Resource management; Multitasking; Interference; Servers; Internet of Things; Computation offloading; device association; Internet of Things (IoT) networks; mobile-edge computing (MEC); multidevice; multitask; resource allocation; EFFICIENT; STRATEGY;
D O I
10.1109/JIOT.2022.3161670
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the emergence of more and more applications of Internet of Things (IoT) mobile devices (IMDs), a contradiction between mobile energy demand and limited battery capacity becomes increasingly prominent. In addition, in ultradense IoT networks, the ultradensely deployed small base stations (SBSs) will consume a large amount of energy. To reduce the network-wide energy consumption and prolong the standby time of IMDs and SBSs, under the proportional computation resource allocation and devices' latency constraints, we jointly perform the device association, computation offloading, and resource allocation to minimize the network-wide energy consumption for ultradense multidevice and multitask IoT networks. To further balance the network loads and fully utilize the computation resources, we take account of multistep computation offloading. Considering that the finally formulated problem is in a nonlinear and mixed-integer form, we develop an improved hierarchical adaptive search (IHAS) algorithm to find its solution. Then, we give the convergence, computational complexity, and parallel implementation analyses for such an algorithm. By comparing with other algorithms, we can easily find that such an algorithm can greatly reduce the network-wide energy consumption under devices' latency constraints.
引用
收藏
页码:18695 / 18709
页数:15
相关论文
共 38 条
[11]   Efficient and Secure Multi-User Multi-Task Computation Offloading for Mobile-Edge Computing in Mobile IoT Networks [J].
Elgendy, Ibrahim A. ;
Zhang, Wei-Zhe ;
Zeng, Yiming ;
He, Hui ;
Tian, Yu-Chu ;
Yang, Yuanyuan .
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020, 17 (04) :2410-2422
[12]   An Efficient Computation Offloading Management Scheme in the Densely Deployed Small Cell Networks With Mobile Edge Computing [J].
Guo, Fengxian ;
Zhang, Heli ;
Ji, Hong ;
Li, Xi ;
Leung, Victor C. M. .
IEEE-ACM TRANSACTIONS ON NETWORKING, 2018, 26 (06) :2651-2664
[13]   Energy-Aware Computation Offloading and Transmit Power Allocation in Ultradense IoT Networks [J].
Guo, Hongzhi ;
Zhang, Jie ;
Liu, Jiajia ;
Zhang, Haibin .
IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (03) :4317-4329
[14]   Energy-Efficient Dynamic Computation Offloading and Cooperative Task Scheduling in Mobile Cloud Computing [J].
Guo, Songtao ;
Liu, Jiadi ;
Yang, Yuanyuan ;
Xiao, Bin ;
Li, Zhetao .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2019, 18 (02) :319-333
[15]   Dynamic Request Scheduling Optimization in Mobile Edge Computing for IoT Applications [J].
Hu, Shihong ;
Li, Guanghui .
IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (02) :1426-1437
[16]  
Kan TY, 2018, WIRELESS OPTIC COMM, P129
[17]  
Labidi W, 2015, 2015 22ND INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS (ICT), P313, DOI 10.1109/ICT.2015.7124703
[18]   An adaptive genetic algorithm with diversity-guided mutation and its global convergence property [J].
Li, MY ;
Cai, ZX ;
Sun, GY .
JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2004, 11 (03) :323-327
[19]   Multiobjective Optimization for Computation Offloading in Fog Computing [J].
Liu, Liqing ;
Chang, Zheng ;
Guo, Xijuan ;
Mao, Shiwen ;
Ristaniemi, Tapani .
IEEE INTERNET OF THINGS JOURNAL, 2018, 5 (01) :283-294
[20]   A Cooperative Partial Computation Offloading Scheme for Mobile Edge Computing Enabled Internet of Things [J].
Ning, Zhaolong ;
Dong, Peiran ;
Kong, Xiangjie ;
Xia, Feng .
IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (03) :4804-4814