Local positive and negative label correlation analysis with label awareness for multi-label classification

被引:7
作者
Huang, Rui [1 ]
Kang, Liuyue [1 ]
机构
[1] Shanghai Univ, Sch Commun & Informat Engn, 99 Shangda Rd, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-label classification; Local positive and negative label correlation; Label imbalance; Label awareness; Label-specific features;
D O I
10.1007/s13042-021-01352-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In multi-label learning, exploiting label correlation, alleviating class imbalance and learning label-specific features have been hot topics to increase classification performance. In the paper, we propose a method to address the three issues simultaneously. The method, named LPLC-LA, builds a Bayesian model by exploiting the local positive and negative label correlations with label awareness. LPLC-LA consists of extracting label-specific features to obtain the local positive and negative correlation, defining two label aware weights for label imbalance and label separability, and then improving the estimation of label conditional probability through the two weights. The experimental results over eight benchmark datasets show that LPLC-LA can achieve better performance compared with other state-of-the-art approaches.
引用
收藏
页码:2659 / 2672
页数:14
相关论文
共 30 条
[1]   Learning multi-label scene classification [J].
Boutell, MR ;
Luo, JB ;
Shen, XP ;
Brown, CM .
PATTERN RECOGNITION, 2004, 37 (09) :1757-1771
[2]  
Cantú-Paz E, 2004, LECT NOTES COMPUT SC, V3102, P959
[3]   Addressing imbalance in multilabel classification: Measures and random resampling algorithms [J].
Charte, Francisco ;
Rivera, Antonio J. ;
del Jesus, Maria J. ;
Herrera, Francisco .
NEUROCOMPUTING, 2015, 163 :3-16
[4]  
Chen ZS, 2019, PR MACH LEARN RES, V101, P411
[5]   Joint label-specific features and label correlation for multi-label learning with missing label [J].
Cheng, Ziwei ;
Zeng, Ziwei .
APPLIED INTELLIGENCE, 2020, 50 (11) :4029-4049
[6]  
Dimitrovski I, 2010, LECT NOTES COMPUT SC, V6242, P231, DOI 10.1007/978-3-642-15751-6_28
[7]   Multilabel classification via calibrated label ranking [J].
Fuernkranz, Johannes ;
Huellermeier, Eyke ;
Mencia, Eneldo Loza ;
Brinker, Klaus .
MACHINE LEARNING, 2008, 73 (02) :133-153
[8]  
Hou P, 2016, AAAI CONF ARTIF INTE, P1680
[9]   Multi-label classification by exploiting local positive and negative pairwise label correlation [J].
Huang, Jun ;
Li, Guorong ;
Wang, Shuhui ;
Xue, Zhe ;
Huang, Qingming .
NEUROCOMPUTING, 2017, 257 :164-174
[10]   Learning Label-Specific Features and Class-Dependent Labels for Multi-Label Classification [J].
Huang, Jun ;
Li, Guorong ;
Huang, Qingming ;
Wu, Xindong .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (12) :3309-3323