A Posteriori Error Estimates of the Galerkin Spectral Methods for Space-Time Fractional Diffusion Equations

被引:10
|
作者
Wang, Huasheng [1 ]
Chen, Yanping [1 ]
Huang, Yunqing [2 ]
Mao, Wenting [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 520631, Guangdong, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Galerkin spectral methods; space-time fractional diffusion equations; a posteriori error estimates; COLLOCATION METHOD; SCHEME;
D O I
10.4208/aamm.OA-2019-0137
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an initial boundary value problem of the space-time fractional diffusion equation is studied. Both temporal and spatial directions for this equation are discreted by the Galerkin spectral methods. And then based on the discretization scheme, reliable a posteriori error estimates for the spectral approximation are derived. Some numerical examples are presented to verify the validity and applicability of the derived a posteriori error estimator.
引用
收藏
页码:87 / 100
页数:14
相关论文
共 50 条