Prediction of fractional Brownian motion-type processes

被引:5
|
作者
Inoue, A.
Anh, V. V.
机构
[1] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[2] Hokkaido Univ, Fac Sci, Dept Math, Sapporo, Hokkaido 060, Japan
关键词
fractional Brownian motion; Hurst index; prediction;
D O I
10.1080/07362990701282971
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a class of continuous- time Gaussian processes with stationary increments via moving-average representation with good MA coefficient. The class includes fractional Brownian motion with Hurst index less than 1/2 as a typical example. It also includes processes which have different indices corresponding to the local and long-time properties, repsectively. We derive some basic properties of the processes, and, using the results, we establish a prediction formula for them. The prediction kernel in the formula is given explicitly in terms of MA and AR coefficients.
引用
收藏
页码:641 / 666
页数:26
相关论文
共 50 条
  • [31] Piecewise fractional Brownian motion
    Perrin, E
    Harba, R
    Iribarren, I
    Jennane, R
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (03) : 1211 - 1215
  • [32] On Fractional Brownian Motion and Wavelets
    Albeverio, S.
    Jorgensen, P. E. T.
    Paolucci, A. M.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (01) : 33 - 63
  • [33] Deconvolution of fractional Brownian motion
    Pipiras, V
    Taqqu, MS
    JOURNAL OF TIME SERIES ANALYSIS, 2002, 23 (04) : 487 - 501
  • [34] Arbitrage with fractional Brownian motion
    Rogers, LCG
    MATHEMATICAL FINANCE, 1997, 7 (01) : 95 - 105
  • [35] Fractal (fractional) Brownian motion
    Chow, Winston C.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2011, 3 (02): : 149 - 162
  • [36] Trading Fractional Brownian Motion
    Guasoni, Paolo
    Nika, Zsolt
    Rasonyi, Miklos
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2019, 10 (03): : 769 - 789
  • [37] Fractional Brownian motion via fractional laplacian
    Bojdecki, T
    Gorostiza, LG
    STATISTICS & PROBABILITY LETTERS, 1999, 44 (01) : 107 - 108
  • [38] FRACTIONAL MARTINGALES AND CHARACTERIZATION OF THE FRACTIONAL BROWNIAN MOTION
    Hu, Yaozhong
    Nualart, David
    Song, Jian
    ANNALS OF PROBABILITY, 2009, 37 (06) : 2404 - 2430
  • [39] Some It Formulas with Respect to Mixed Fractional Brownian Motion and Brownian Motion
    舒慧生
    阚秀
    周海涛
    JournalofDonghuaUniversity(EnglishEdition), 2010, 27 (04) : 530 - 534
  • [40] Persistence Exponents for Gaussian Random Fields of Fractional Brownian Motion Type
    Molchan, G.
    JOURNAL OF STATISTICAL PHYSICS, 2018, 173 (06) : 1587 - 1597