Homogeneous Continuous-Time, Finite-State Hidden Semi-Markov Modeling for Enhancing Empirical Classification System Diagnostics of Industrial Components

被引:10
作者
Cannarile, Francesco [1 ,2 ]
Compare, Michele [1 ,2 ]
Baraldi, Piero [1 ]
Di Maio, Francesco [1 ]
Zio, Enrico [1 ,3 ,4 ,5 ]
机构
[1] Politecn Milan, Dipartimento Energia, I-20156 Milan, Italy
[2] Aramis Srl, I-20121 Milan, Italy
[3] Ecole Cent Paris, European Fdn New Energy Elect France, Syst Sci & Energet Challenge, F-91190 Paris, France
[4] Superlec, F-91190 Paris, France
[5] Kyung Hee Univ, Coll Engn, Dept Nucl Engn, Seoul 02447, South Korea
关键词
hybrid diagnostic system; feature extraction; feature selection; k-nearest neighbors (KNN) classifier; homogeneous continuous-time finite-state hidden semi-Markov model (HCTFSHSMM); maximum likelihood estimation (MLE); differential evolution (DE); PROBABILISTIC FUNCTIONS; GENETIC ALGORITHM; DEGRADATION; OPTIMIZATION; INFERENCE; PROGNOSIS; FRAMEWORK; KERNEL;
D O I
10.3390/machines6030034
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work presents a method to improve the diagnostic performance of empirical classification system (ECS), which is used to estimate the degradation state of components based on measured signals. The ECS is embedded in a homogenous continuous-time, finite-state semi-Markov model (HCTFSSMM), which adjusts diagnoses based on the past history of components. The combination gives rise to a homogeneous continuous-time finite-state hidden semi-Markov model (HCTFSHSMM). In an application involving the degradation of bearings in automotive machines, the proposed method is shown to be superior in classification performance compared to the single-stage ECS.
引用
收藏
页数:18
相关论文
共 49 条
[1]   AN INTRODUCTION TO KERNEL AND NEAREST-NEIGHBOR NONPARAMETRIC REGRESSION [J].
ALTMAN, NS .
AMERICAN STATISTICIAN, 1992, 46 (03) :175-185
[2]  
Alwadie A, 2017, MACHINES, V5, DOI 10.3390/machines5040027
[3]  
[Anonymous], 2001, SPEA2 IMPROVING STRE, DOI DOI 10.3929/ETHZ-A-004284029
[4]  
[Anonymous], 2008, LECT NOTES STAT
[5]   Hierarchical document categorization with k-NN and concept-based thesauri [J].
Bang, SL ;
Yang, JD ;
Yang, HJ .
INFORMATION PROCESSING & MANAGEMENT, 2006, 42 (02) :387-406
[6]   A Modeling Framework for Maintenance Optimization of Electrical Components Based on Fuzzy Logic and Effective Age [J].
Baraldi, P. ;
Balestrero, A. ;
Compare, M. ;
Benetrix, L. ;
Despujols, A. ;
Zio, E. .
QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2013, 29 (03) :385-405
[7]   Modelling the effects of maintenance on the degradation of a water-feeding turbo-pump of a nuclear power plant [J].
Baraldi, P. ;
Compare, M. ;
Despujols, A. ;
Zio, E. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2011, 225 (O2) :169-183
[8]   Application of a Niched Pareto Genetic Algorithm for Selecting Features for Nuclear Transients Classification [J].
Baraldi, P. ;
Pedroni, N. ;
Zio, E. .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2009, 24 (02) :118-151
[9]   Hierarchical k-nearest neighbours classification and binary differential evolution for fault diagnostics of automotive bearings operating under variable conditions [J].
Baraldi, Piero ;
Cannarile, Francesco ;
Di Maio, Francesco ;
Zio, Enrico .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2016, 56 :1-13
[10]  
Baraldi P, 2013, P I MECH ENG O-J RIS, V227, P267, DOI [10.1177/1748006X13488479, 10.1177/1748006x13488479]