Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes

被引:198
作者
Begley, M
Sleator, RD
Gahan, CGM
Hill, C
机构
[1] Natl Univ Ireland Univ Coll Cork, Dept Microbiol, Cork, Ireland
[2] Natl Univ Ireland Univ Coll Cork, Alimentary Pharmabiot Ctr, Cork, Ireland
[3] Natl Univ Ireland Univ Coll Cork, Sch Pharm, Cork, Ireland
关键词
D O I
10.1128/IAI.73.2.894-904.2005
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Listeria monocytogenes must resist the deleterious actions of bile in order to infect and subsequently colonize the human gastrointestinal tract. The molecular mechanisms used by the bacterium to resist bile and the influence of bile on pathogenesis are as yet largely unexplored. This study describes the analysis of three genes-bsh, pva, and btlB-previously annotated as bile-associated loci in the sequenced L. monocytogenes EGDe genome (lmo2067, lmo0446, and lmo0754, respectively). Analysis of deletion mutants revealed a role for all three genes in resisting the acute toxicity of bile and bile salts, particularly glycoconjugated bile salts at low pH. Mutants were unaffected in the other stress responses examined (acid, salt, and detergents). Bile hydrolysis assays demonstrate that L. monocytogenes possesses only one bile salt hydrolase gene, namely, bsh, Transcriptional analyses and activity assays revealed that, although it is regulated by both PrfA and sigma(B), the latter appears to play the greater role in modulating bsh expression. In addition to being incapable of bile hydrolysis, a sigB mutant was shown to be exquisitely sensitive to bile salts. Furthermore, increased expression of sigB was detected under anaerobic conditions and during murine infection. A gene previously annotated as a possible penicillin V amidase (pva) or bile salt hydrolase was shown to be required for resistance to penicillin V but not penicillin G but did not demonstrate a role in bile hydrolysis. Finally, animal (murine) studies revealed an important role for both bsh and NIB in the intestinal persistence of L. monocytogenes.
引用
收藏
页码:894 / 904
页数:11
相关论文
共 56 条
[21]   Characterization of the groESL operon in Listeria monocytogenes:: Utilization of two reporter systems (gfp and hly) for evaluating in vivo expression [J].
Gahan, CGM ;
O'Mahony, J ;
Hill, C .
INFECTION AND IMMUNITY, 2001, 69 (06) :3924-3932
[22]   DECONJUGATION OF BILE-ACIDS BY INTESTINAL LACTOBACILLI [J].
GILLILAND, SE ;
SPECK, ML .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1977, 33 (01) :15-18
[23]  
Glaser P, 2001, SCIENCE, V294, P849
[24]   PURIFICATION AND CHARACTERIZATION OF CONJUGATED BILE-SALT HYDROLASE FROM BIFIDOBACTERIUM-LONGUM BB536 [J].
GRILL, JP ;
SCHNEIDER, F ;
CROCIANI, J ;
BALLONGUE, J .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1995, 61 (07) :2577-2582
[25]   Mechanisms of bacterial resistance and response to bile [J].
Gunn, JS .
MICROBES AND INFECTION, 2000, 2 (08) :907-913
[26]   Extracellular replication of Listeria monocytogenes in the murine gall bladder [J].
Hardy, J ;
Francis, KP ;
DeBoer, M ;
Chu, P ;
Gibbs, K ;
Contag, CH .
SCIENCE, 2004, 303 (5659) :851-853
[27]   Bile acids: The good, the bad, and the ugly [J].
Hofmann, AF .
NEWS IN PHYSIOLOGICAL SCIENCES, 1999, 14 :24-29
[28]  
HOFMANN AF, 1992, J LIPID RES, V33, P617
[29]  
HORTON RM, 1990, BIOTECHNIQUES, V8, P528
[30]   PURIFICATION AND CHARACTERIZATION OF A NEW HYDROLASE FOR CONJUGATED BILE-ACIDS, CHENODEOXYCHOLYLTAURINE HYDROLASE, FROM BACTEROIDES-VULGATUS [J].
KAWAMOTO, K ;
HORIBE, I ;
UCHIDA, K .
JOURNAL OF BIOCHEMISTRY, 1989, 106 (06) :1049-1053