Freely Scalable Quantum Technologies Using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links

被引:195
作者
Nickerson, Naomi H. [1 ]
Fitzsimons, Joseph F. [2 ,3 ]
Benjamin, Simon C. [4 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England
[2] Singapore Univ Technol & Design, Singapore 138682, Singapore
[3] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[4] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
基金
英国工程与自然科学研究理事会; 新加坡国家研究基金会;
关键词
ERROR RATES; ENTANGLEMENT; COMPUTATION;
D O I
10.1103/PhysRevX.4.041041
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Exquisite quantum control has now been achieved in small ion traps, in nitrogen-vacancy centers and in superconducting qubit clusters. We can regard such a system as a universal cell with diverse technological uses from communication to large-scale computing, provided that the cell is able to network with others and overcome any noise in the interlinks. Here, we show that loss-tolerant entanglement purification makes quantum computing feasible with the noisy and lossy links that are realistic today: With a modestly complex cell design, and using a surface code protocol with a network noise threshold of 13.3%, we find that interlinks that attempt entanglement at a rate of 2 MHz but suffer 98% photon loss can result in kilohertz computer clock speeds (i.e., rate of high-fidelity stabilizer measurements). Improved links would dramatically increase the clock speed. Our simulations employ local gates of a fidelity already achieved in ion trap devices.
引用
收藏
页数:17
相关论文
共 35 条
[21]  
Jamiolkowski A., 1972, Rep. Math. Phys., V3, P275, DOI DOI 10.1016/0034-4877(72)90011-0
[22]   Fault-tolerant quantum computation by anyons [J].
Kitaev, AY .
ANNALS OF PHYSICS, 2003, 303 (01) :2-30
[23]   Blossom V: a new implementation of a minimum cost perfect matching algorithm [J].
Kolmogorov, Vladimir .
MATHEMATICAL PROGRAMMING COMPUTATION, 2009, 1 (01) :43-67
[24]   Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects [J].
Monroe, C. ;
Raussendorf, R. ;
Ruthven, A. ;
Brown, K. R. ;
Maunz, P. ;
Duan, L. -M. ;
Kim, J. .
PHYSICAL REVIEW A, 2014, 89 (02)
[25]   Topological quantum computing with a very noisy network and local error rates approaching one percent [J].
Nickerson, Naomi H. ;
Li, Ying ;
Benjamin, Simon C. .
NATURE COMMUNICATIONS, 2013, 4
[26]   Unconditional quantum teleportation between distant solid-state quantum bits [J].
Pfaff, W. ;
Hensen, B. J. ;
Bernien, H. ;
van Dam, S. B. ;
Blok, M. S. ;
Taminiau, T. H. ;
Tiggelman, M. J. ;
Schouten, R. N. ;
Markham, M. ;
Twitchen, D. J. ;
Hanson, R. .
SCIENCE, 2014, 345 (6196) :532-535
[27]   A quantum gate between a flying optical photon and a single trapped atom [J].
Reiserer, Andreas ;
Kalb, Norbert ;
Rempe, Gerhard ;
Ritter, Stephan .
NATURE, 2014, 508 (7495) :237-+
[28]   Observation of Measurement-Induced Entanglement and Quantum Trajectories of Remote Superconducting Qubits [J].
Roch, N. ;
Schwartz, M. E. ;
Motzoi, F. ;
Macklin, C. ;
Vijay, R. ;
Eddins, A. W. ;
Korotkov, A. N. ;
Whaley, K. B. ;
Sarovar, M. ;
Siddiqi, I. .
PHYSICAL REVIEW LETTERS, 2014, 112 (17)
[29]  
Steiner M. M., ARXIV14076036
[30]  
Taminiau TH, 2014, NAT NANOTECHNOL, V9, P171, DOI [10.1038/NNANO.2014.2, 10.1038/nnano.2014.2]