Systematic review of artificial intelligence-based image diagnosis for inflammatory bowel disease

被引:11
作者
Kawamoto, Ami [1 ]
Takenaka, Kento [1 ]
Okamoto, Ryuichi [1 ]
Watanabe, Mamoru [2 ]
Ohtsuka, Kazuo [1 ,3 ]
机构
[1] Tokyo Med & Dent Univ, Dept Gastroenterol & Hepatol, Tokyo, Japan
[2] Tokyo Med & Dent Univ, TMDU Adv Res Inst, Tokyo, Japan
[3] Tokyo Med & Dent Univ, Endoscop Unit, Tokyo, Japan
关键词
artificial intelligence; deep learning; inflammatory bowel disease; CROHNS-DISEASE; NEURAL-NETWORK; ENTEROGRAPHY; VALIDATION;
D O I
10.1111/den.14334
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Objectives Diagnosis of inflammatory bowel diseases (IBD) involves combining clinical, laboratory, endoscopic, histologic, and radiographic data. Artificial intelligence (AI) is rapidly being developed in various fields of medicine, including IBD. Because a key part in the diagnosis of IBD involves evaluating imaging data, AI is expected to play an important role in this aspect in the coming decades. We conducted a systematic literature review to highlight the current advancement of AI in diagnosing IBD from imaging data. Methods We performed an electronic PubMed search of the MEDLINE database for studies up to January 2022 involving IBD and AI. Studies using imaging data as input were included, and nonimaging data were excluded. Results A total of 27 studies are reviewed, including 18 studies involving endoscopic images and nine studies involving other imaging data. Conclusion We highlight in this review the recent advancement of AI in diagnosing IBD from imaging data by summarizing the relevant studies, and discuss the future role of AI in clinical practice.
引用
收藏
页码:1311 / 1319
页数:9
相关论文
共 46 条
[1]   Automatic detection of various abnormalities in capsule endoscopy videos by a deep learning-based system: a multicenter study [J].
Aoki, Tomonori ;
Yamada, Atsuo ;
Kato, Yusuke ;
Saito, Hiroaki ;
Tsuboi, Akiyoshi ;
Nakada, Ayako ;
Niikura, Ryota ;
Fujishiro, Mitsuhiro ;
Oka, Shiro ;
Ishihara, Soichiro ;
Matsuda, Tomoki ;
Nakahori, Masato ;
Tanaka, Shinji ;
Koike, Kazuhiko ;
Tada, Tomohiro .
GASTROINTESTINAL ENDOSCOPY, 2021, 93 (01) :165-+
[2]   Ulcer severity grading in video capsule images of patients with Crohn's disease: an ordinal neural network solution [J].
Barash, Yiftach ;
Azaria, Liran ;
Soffer, Shelly ;
Yehuda, Reuma Margalit ;
Shlomi, Oranit ;
Ben-Horin, Shomron ;
Eliakim, Rami ;
Klang, Eyal ;
Kopylov, Uri .
GASTROINTESTINAL ENDOSCOPY, 2021, 93 (01) :187-192
[3]   Automatic, computer-aided determination of endoscopic and histological inflammation in patients with mild to moderate ulcerative colitis based on red density [J].
Bossuyt, Peter ;
Nakase, Hiroshi ;
Vermeire, Severine ;
de Hertogh, Gert ;
Eelbode, Tom ;
Ferrante, Marc ;
Hasegawa, Tadashi ;
Willekens, Hilde ;
Ikemoto, Yousuke ;
Makino, Takao ;
Bisschops, Raf .
GUT, 2020, 69 (10) :1778-1786
[4]   The Association Between Arthralgia and Vedolizumab Using Natural Language Processing [J].
Cai, Tianrun ;
Lin, Tzu-Chieh ;
Bond, Allison ;
Huang, Jie ;
Kane-Wanger, Gwendolyn ;
Cagan, Andrew ;
Murphy, Shawn N. ;
Ananthakrishnan, Ashwin N. ;
Liao, Katherine P. .
INFLAMMATORY BOWEL DISEASES, 2018, 24 (10) :2242-2246
[5]   Early Mucosal Healing With Infliximab Is Associated With Improved Long-term Clinical Outcomes in Ulcerative Colitis [J].
Colombel, Jean Frederic ;
Rutgeerts, Paul ;
Reinisch, Walter ;
Esser, Dirk ;
Wang, Yanxin ;
Lang, Yinghua ;
Marano, Colleen W. ;
Strauss, Richard ;
Oddens, Bjoern J. ;
Feagan, Brian G. ;
Hanauer, Stephen B. ;
Lichtenstein, Gary R. ;
Present, Daniel ;
Sands, Bruce E. ;
Sandborn, William J. .
GASTROENTEROLOGY, 2011, 141 (04) :1194-1201
[6]   Gastroenterologist-Level Identification of Small-Bowel Diseases and Normal Variants by Capsule Endoscopy Using a Deep-Learning Model [J].
Ding, Zhen ;
Shi, Huiying ;
Zhang, Hao ;
Meng, Lingjun ;
Fan, Mengke ;
Han, Chaoqun ;
Zhang, Kun ;
Ming, Fanhua ;
Xie, Xiaoping ;
Liu, Hao ;
Liu, Jun ;
Lin, Rong ;
Hou, Xiaohua .
GASTROENTEROLOGY, 2019, 157 (04) :1044-+
[7]   Multi-omics differentially classify disease state and treatment outcome in pediatric Crohn's disease [J].
Douglas, Gavin M. ;
Hansen, Richard ;
Jones, Casey M. A. ;
Dunn, Katherine A. ;
Comeau, Andre M. ;
Bielawski, Joseph P. ;
Tayler, Rachel ;
El-Omar, Emad M. ;
Russell, Richard K. ;
Hold, Georgina L. ;
Langille, Morgan G. I. ;
Van Limbergen, Johan .
MICROBIOME, 2018, 6
[8]   Automated versus subjective assessment of spatial and temporal MRI small bowel motility in Crohn's disease [J].
Gollifer, R. M. ;
Menys, A. ;
Plumb, A. ;
Mengoudi, K. ;
Puylaert, C. A. J. ;
Tielbeek, J. A. W. ;
Ponsioen, C. Y. ;
Vos, F. M. ;
Stoker, J. ;
Taylor, S. A. ;
Atkinson, D. .
CLINICAL RADIOLOGY, 2019, 74 (10) :814.e9-814.e19
[9]   Central Reading of Ulcerative Colitis Clinical Trial Videos Using Neural Networks [J].
Gottlieb, Klaus ;
Requa, James ;
Karnes, William ;
Gudivada, Ranga Chandra ;
Shen, Jie ;
Rael, Efren ;
Arora, Vipin ;
Dao, Tyler ;
Ninh, Andrew ;
McGill, James .
GASTROENTEROLOGY, 2021, 160 (03) :710-+
[10]   Artificial intelligence applications in inflammatory bowel disease: Emerging technologies and future directions [J].
Gubatan, John ;
Levitte, Steven ;
Patel, Akshar ;
Balabanis, Tatiana ;
Wei, Mike T. ;
Sinha, Sidhartha R. .
WORLD JOURNAL OF GASTROENTEROLOGY, 2021, 27 (17) :1920-1935