Estimation of Unit Process Data for Life Cycle Assessment Using a Decision Tree-Based Approach
被引:39
作者:
Zhao, Bu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Sch Environm & Sustainabil, Ann Arbor, MI 48109 USA
Univ Michigan, Michigan Inst Computat Discovery & Engn, Ann Arbor, MI 48109 USAUniv Michigan, Sch Environm & Sustainabil, Ann Arbor, MI 48109 USA
Zhao, Bu
[1
,2
]
Shuai, Chenyang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Sch Environm & Sustainabil, Ann Arbor, MI 48109 USA
Univ Michigan, Michigan Inst Computat Discovery & Engn, Ann Arbor, MI 48109 USAUniv Michigan, Sch Environm & Sustainabil, Ann Arbor, MI 48109 USA
Shuai, Chenyang
[1
,2
]
Hou, Ping
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Sch Environm & Sustainabil, Ann Arbor, MI 48109 USA
Univ Michigan, Michigan Inst Computat Discovery & Engn, Ann Arbor, MI 48109 USAUniv Michigan, Sch Environm & Sustainabil, Ann Arbor, MI 48109 USA
Hou, Ping
[1
,2
]
Qu, Shen
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Inst Technol, Sch Management & Econ, Beijing 100081, Peoples R China
Beijing Inst Technol, Ctr Energy & Environm Policy Res, Beijing 100081, Peoples R ChinaUniv Michigan, Sch Environm & Sustainabil, Ann Arbor, MI 48109 USA
Qu, Shen
[3
,4
]
Xu, Ming
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Sch Environm & Sustainabil, Ann Arbor, MI 48109 USA
Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USAUniv Michigan, Sch Environm & Sustainabil, Ann Arbor, MI 48109 USA
Xu, Ming
[1
,5
]
机构:
[1] Univ Michigan, Sch Environm & Sustainabil, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Michigan Inst Computat Discovery & Engn, Ann Arbor, MI 48109 USA
[3] Beijing Inst Technol, Sch Management & Econ, Beijing 100081, Peoples R China
[4] Beijing Inst Technol, Ctr Energy & Environm Policy Res, Beijing 100081, Peoples R China
[5] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA
life cycle inventory;
machine learning decision tree;
life cycle assessment;
XGBoost;
unit process;
DATA GAPS;
ECOINVENT DATABASE;
PART;
INVENTORY;
REGRESSION;
SCOPE;
GOAL;
D O I:
10.1021/acs.est.0c07484
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Lacking unit process data is a major challenge for developing life cycle inventory (LCI) in life cycle assessment (LCA). Previously, we developed a similarity-based approach to estimate missing unit process data, which works only when less than 5% of the data are missing in a unit process. In this study, we developed a more flexible machine learning model to estimate missing unit process data as a complement to our previous method. In particular, we adopted a decision tree-based supervised learning approach to use an existing unit process dataset (ecoinvent 3.1) to characterize the relationship between the known information (predictors) and the missing one (response). The results show that our model can successfully classify the zero and nonzero flows with a very low misclassification rate (0.79% when 10% of the data are missing). For nonzero flows, the model can accurately estimate their values with an R-2 over 0.7 when less than 20% of data are missing in one unit process. Our method can provide important data to complement primary LCI data for LCA studies and demonstrates the promising applications of machine learning techniques in LCA.
机构:
Hefei Univ Technol, Sch Civil Engn, Hefei 230009, Peoples R ChinaHefei Univ Technol, Sch Civil Engn, Hefei 230009, Peoples R China
Zhang, Yubing
Jiang, Xiaoyan
论文数: 0引用数: 0
h-index: 0
机构:
Hefei Univ Technol, Sch Civil Engn, Hefei 230009, Peoples R ChinaHefei Univ Technol, Sch Civil Engn, Hefei 230009, Peoples R China
Jiang, Xiaoyan
Cui, Caiyun
论文数: 0引用数: 0
h-index: 0
机构:
North China Inst Sci & Technol, Architectural Engn Coll, Langfang 065201, Peoples R ChinaHefei Univ Technol, Sch Civil Engn, Hefei 230009, Peoples R China
Cui, Caiyun
Skitmore, Martin
论文数: 0引用数: 0
h-index: 0
机构:
Bond Univ, Fac Soc & Design, Robina, Qld 4226, AustraliaHefei Univ Technol, Sch Civil Engn, Hefei 230009, Peoples R China