HOMOCLINIC SOLUTIONS FOR ORDINARY (q,p)-LAPLACIAN SYSTEMS WITH A COERCIVE POTENTIAL

被引:0
|
作者
Pasca, Daniel [1 ]
机构
[1] Univ Oradea, Dept Math & Informat, Univ St 1, Oradea 410087, Romania
关键词
Homoclinic solutions; (q; p)-Laplacian systems; coercive potential; NONAUTONOMOUS 2ND-ORDER SYSTEMS; DIFFERENTIAL-INCLUSIONS SYSTEMS; P-LAPLACIAN SYSTEMS; PERIODIC-SOLUTIONS; HAMILTONIAN-SYSTEMS; SUBHARMONIC SOLUTIONS; EXISTENCE; ORBITS; P)-LAPLACIAN; (Q;
D O I
10.1515/ms-2016-0285
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A result for the existence of homoclinic orbits is obtained for (q,p)-Laplacian systems. (C) 2017 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:509 / 518
页数:10
相关论文
共 50 条
  • [31] Nonconstant periodic solutions for a class of ordinary p-Laplacian systems
    Li, Chun
    Agarwal, Ravi P.
    Pu, Yang
    Tang, Chun-Lei
    BOUNDARY VALUE PROBLEMS, 2016,
  • [32] Existence and multiplicity of periodic solutions for the ordinary p-Laplacian systems
    Liao K.
    Tang C.-L.
    Journal of Applied Mathematics and Computing, 2011, 35 (1-2) : 395 - 406
  • [33] Nonconstant periodic solutions for a class of ordinary p-Laplacian systems
    Chun Li
    Ravi P Agarwal
    Yang Pu
    Chun-Lei Tang
    Boundary Value Problems, 2016
  • [34] Existence of solutions for (p, q)-Laplacian equations with an indefinite potential
    Kandilakis, Dimitrios A.
    Magiropoulos, Manolis
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (05) : 844 - 855
  • [35] HOMOCLINIC SOLUTIONS FOR SUBQUADRATIC HAMILTONIAN SYSTEMS WITHOUT COERCIVE CONDITIONS
    Zhang, Ziheng
    Xiang, Tian
    Yuan, Rong
    TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (04): : 1089 - 1105
  • [36] Multiple solutions for coercive p-Laplacian equations
    Liu, SB
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 316 (01) : 229 - 236
  • [37] Multiple homoclinic solutions for p-Laplacian Hamiltonian systems with concave–convex nonlinearities
    Lili Wan
    Boundary Value Problems, 2020
  • [38] EXISTENCE OF HOMOCLINIC SOLUTIONS FOR THE SECOND-ORDER DISCRETE P-LAPLACIAN SYSTEMS
    Chen, Peng
    Tang, X. H.
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (05): : 2123 - 2143
  • [39] Existence of homoclinic solutions for p(n)-Laplacian Hamiltonian systems on Orlicz sequence spaces
    Chen, Peng
    Tang, X. H.
    Agarwal, Ravi P.
    MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) : 989 - 1002
  • [40] Existence of multiple solutions for a class of (p, q)-Laplacian systems
    Afrouzi, G. A.
    Mahdavi, S.
    Naghizadeh, Z.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (05) : 2243 - 2250