A PERSON FIT TEST FOR IRT MODELS FOR POLYTOMOUS ITEMS

被引:53
作者
Glas, C. A. W. [1 ]
Dagohoy, Anna Villa T. [1 ]
机构
[1] Univ Twente, Dept Res Methodol Measurement & Data Anal, NL-7500 AE Enschede, Netherlands
关键词
item response theory; person fit; model fit; multidimensional item response theory; polytomous items; power; Type I error;
D O I
10.1007/s11336-003-1081-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A person fit test based on the Lagrange multiplier test is presented for three item response theory models for polytomous items: the generalized partial credit model, the sequential model, and the graded response model. The test can also be used in the framework of multidimensional ability parameters. It is shown that the Lagrange multiplier statistic can take both the effects of estimation of the item parameters and the estimation of the person parameters into account. The Lagrange multiplier statistic has an asymptotic X-2-distribution.The Type I error rate and power are investigated using simulation studies. Results show that test statistics that ignore the effects of estimation of the persons' ability parameters have decreased Type I error rates and power. Incorporating a correction to account for the effects of the estimation of the persons' ability parameters results in acceptable Type I error rates and power characteristics; incorporating a correction for the estimation of the item parameters has very little additional effect. It is investigated to what extent the three models give comparable results, both in the simulation studies and in an example using data from the NEO Personality Inventory-Revised.
引用
收藏
页码:159 / 180
页数:22
相关论文
共 50 条
[1]   MAXIMUM-LIKELIHOOD ESTIMATION OF PARAMETERS SUBJECT TO RESTRAINTS [J].
AITCHISON, J ;
SILVEY, SD .
ANNALS OF MATHEMATICAL STATISTICS, 1958, 29 (03) :813-828
[2]   GOODNESS OF FIT TEST FOR RASCH MODEL [J].
ANDERSEN, EB .
PSYCHOMETRIKA, 1973, 38 (01) :123-140
[3]   MARGINAL MAXIMUM-LIKELIHOOD ESTIMATION OF ITEM PARAMETERS - APPLICATION OF AN EM ALGORITHM [J].
BOCK, RD ;
AITKIN, M .
PSYCHOMETRIKA, 1981, 46 (04) :443-459
[4]   FULL-INFORMATION ITEM FACTOR-ANALYSIS [J].
BOCK, RD ;
GIBBONS, R ;
MURAKI, E .
APPLIED PSYCHOLOGICAL MEASUREMENT, 1988, 12 (03) :261-280
[5]  
Costa P. T., 1992, Psychological Assessment, V4, P5, DOI [10.1037/1040-3590.4.1.5, DOI 10.1037/1040-3590.4.1.5]
[6]   APPROPRIATENESS MEASUREMENT WITH POLYCHOTOMOUS ITEM RESPONSE MODELS AND STANDARDIZED INDEXES [J].
DRASGOW, F ;
LEVINE, MV ;
WILLIAMS, EA .
BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1985, 38 (MAY) :67-86
[7]   APPROPRIATENESS MEASUREMENT FOR SOME MULTIDIMENSIONAL TEST BATTERIES [J].
DRASGOW, F ;
LEVINE, MV ;
MCLAUGHLIN, ME .
APPLIED PSYCHOLOGICAL MEASUREMENT, 1991, 15 (02) :171-191
[8]   FULL-INFORMATION ITEM BIFACTOR ANALYSIS [J].
GIBBONS, RD ;
HEDEKER, DR .
PSYCHOMETRIKA, 1992, 57 (03) :423-436
[9]  
Glas C. A., 2000, COMPUTERIZED ADAPTIV, P271, DOI DOI 10.1007/0-306-47531-6_14
[10]   THE DERIVATION OF SOME TESTS FOR THE RASCH MODEL FROM THE MULTINOMIAL DISTRIBUTION [J].
GLAS, CAW .
PSYCHOMETRIKA, 1988, 53 (04) :525-546