Dropping method for rectangle packing problem

被引:0
|
作者
Oshihiko, T [1 ]
Akahashi, T [1 ]
机构
[1] Niigata Univ, Grad Sch Sci & Technol, Niigata 9502181, Japan
来源
ISCAS 2000: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - PROCEEDINGS, VOL I: EMERGING TECHNOLOGIES FOR THE 21ST CENTURY | 2000年
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In the rectangle packing problem, encoding schemes to represent the placements of rectangles are the key factors determining the efficiency of algorithms. SEQ-PAIR is one of the most sophisticated encoding scheme, which has been considered to have a small solution space [2]. In this paper, we begin with a packing procedure that does not look so smart. This procedure, however, leads us to another encoding scheme DS (the abbreviation for Dropping Schedule) whose solution space has the same size as that of SEQ-PAIR. Moreover, we introduce encoding scheme LOT as an adv ancedversion of DS, which has a smaller solution space.
引用
收藏
页码:200 / 203
页数:4
相关论文
共 50 条
  • [1] On the constrained rectangle packing problem
    Georgis, N.
    Petrou, M.
    Kittler, J.
    International Journal of Modelling and Simulation, 2000, 20 (04): : 293 - 299
  • [2] ORIENTED ALIGNED RECTANGLE PACKING PROBLEM
    AGARWAL, PK
    SHING, MT
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1992, 62 (02) : 210 - 220
  • [3] A robust genetic algorithm for rectangle packing problem
    De-Sheng Chen
    Chang-Tzu Lin
    Yi-Wen Wang
    Journal of Combinatorial Optimization, 2007, 14 : 500 - 500
  • [4] Parallel Computing Application in Rectangle Packing Problem
    Wang, Xuechun
    Jin, Zongxin
    ADVANCED DESIGNS AND RESEARCHES FOR MANUFACTURING, PTS 1-3, 2013, 605-607 : 2362 - 2365
  • [5] Applying genetic algorithms to rectangle packing problem
    Lipnitskij, A.A.
    Kibernetika i Sistemnyj Analiz, 2002, (06): : 180 - 184
  • [6] A robust genetic algorithm for rectangle packing problem
    Chen, De-Sheng
    Lin, Chang-Tzu
    Wang, Yi-Wen
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2007, 14 (04) : 500 - 500
  • [7] Rectangle packing with a recursive Pilot Method
    Arruda, Vitor Pimenta dos Reis
    Mirisola, Luiz Gustavo Bizarro
    Soma, Nei Yoshihiro
    COMPUTERS & OPERATIONS RESEARCH, 2024, 161
  • [8] An Ising Model Mapping to Solve Rectangle Packing Problem
    Terada, Kotaro
    Oku, Daisuke
    Kanamaru, Sho
    Tanaka, Shu
    Hayashi, Masato
    Yamaoka, Masanao
    Yanagisawa, Masao
    Togawa, Nozomu
    2018 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2018,
  • [9] An efficient heuristic algorithm for rectangle-packing problem
    Huang, Wenqi
    Chen, Duanbing
    SIMULATION MODELLING PRACTICE AND THEORY, 2007, 15 (10) : 1356 - 1365
  • [10] 4-block heuristic for the rectangle packing problem
    Scheithauer, G
    Sommerweiss, U
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1998, 108 (03) : 509 - 526