A BLOB METHOD FOR THE AGGREGATION EQUATION

被引:52
|
作者
Craig, Katy [1 ]
Bertozzi, Andrea L. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, 520 Portola Plaza, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Aggregation equation; vortex blob method; particle method; POINT VORTEX METHOD; STATIONARY STATES; NONLOCAL EQUATIONS; BLOWUP SOLUTIONS; WEAK SOLUTIONS; CONVERGENCE; MODEL; STABILITY; REGULARIZATION; POTENTIALS;
D O I
10.1090/mcom3033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by classical vortex blob methods for the Euler equations, we develop a numerical blob method for the aggregation equation. This provides a counterpoint to existing literature on particle methods. By regularizing the velocity field with a mollifier or "blob function", the blob method has a faster rate of convergence and allows a wider range of admissible kernels. In fact, we prove arbitrarily high polynomial rates of convergence to classical solutions, depending on the choice of mollifier. The blob method conserves mass and the corresponding particle system is energy decreasing for a regularized free energy functional and preserves the Wasserstein gradient flow structure. We consider numerical examples that validate our predicted rate of convergence and illustrate qualitative properties of the method.
引用
收藏
页码:1681 / 1717
页数:37
相关论文
共 50 条
  • [41] Local discontinuous Galerkin method for a hidden-memory variable order reaction-diffusion equation
    Wei, Leilei
    Wang, Huanhuan
    Chen, Yanping
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (03) : 2857 - 2872
  • [42] A note on the Krone deposition equation and significance of floc aggregation
    Mehta, Ashish J.
    Manning, Andrew J.
    Khare, Yogesh P.
    MARINE GEOLOGY, 2014, 354 : 34 - 39
  • [43] FAST ALGORITHM BASED ON TT-M FE METHOD FOR MODIFIED CAHN-HILLIARD EQUATION
    Wang, Danxia
    Wang, Xingxing
    Li, Yaqian
    Jia, Hongen
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (01) : 327 - 346
  • [44] Existence of Weak Solutions of the Aggregation Equation with the p(·)-Laplacian
    Vildanova V.F.
    Mukminov F.K.
    Journal of Mathematical Sciences, 2021, 252 (2) : 156 - 167
  • [45] A numerical method for a nonlocal diffusion equation with additive noise
    Medvedev, Georgi S.
    Simpson, Gideon
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2023, 11 (04): : 1433 - 1469
  • [46] Pseudospectral method of solution of the Fitzhugh-Nagumo equation
    Olmos, Daniel
    Shizgal, Bernie D.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (07) : 2258 - 2278
  • [47] A GALERKIN RADIAL BASIS FUNCTION METHOD FOR THE SCHRODINGER EQUATION
    Kormann, Katharina
    Larsson, Elisabeth
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (06) : A2832 - A2855
  • [48] The Rothe method for the Mckendrick-von Foerster equation
    Leszczynski, Henryk
    Zwierkowski, Piotr
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (03) : 589 - 602
  • [49] Wavelet moment method for the Cauchy problem for the Helmholtz equation
    Reginska, Teresa
    Wakulicz, Anduej
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 223 (01) : 218 - 229
  • [50] Compact finite difference method for the fractional diffusion equation
    Cui, Mingrong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (20) : 7792 - 7804