A BLOB METHOD FOR THE AGGREGATION EQUATION

被引:52
|
作者
Craig, Katy [1 ]
Bertozzi, Andrea L. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, 520 Portola Plaza, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Aggregation equation; vortex blob method; particle method; POINT VORTEX METHOD; STATIONARY STATES; NONLOCAL EQUATIONS; BLOWUP SOLUTIONS; WEAK SOLUTIONS; CONVERGENCE; MODEL; STABILITY; REGULARIZATION; POTENTIALS;
D O I
10.1090/mcom3033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by classical vortex blob methods for the Euler equations, we develop a numerical blob method for the aggregation equation. This provides a counterpoint to existing literature on particle methods. By regularizing the velocity field with a mollifier or "blob function", the blob method has a faster rate of convergence and allows a wider range of admissible kernels. In fact, we prove arbitrarily high polynomial rates of convergence to classical solutions, depending on the choice of mollifier. The blob method conserves mass and the corresponding particle system is energy decreasing for a regularized free energy functional and preserves the Wasserstein gradient flow structure. We consider numerical examples that validate our predicted rate of convergence and illustrate qualitative properties of the method.
引用
收藏
页码:1681 / 1717
页数:37
相关论文
共 50 条
  • [1] CONVERGENCE ANALYSIS OF THE VORTEX BLOB METHOD FOR THE b-EQUATION
    Duan, Yong
    Liu, Jian-Guo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (05) : 1995 - 2011
  • [2] Numerical solution for an aggregation equation with degenerate diffusion
    Carlos Cabrales, Roberto
    Gutierrez-Santacreu, Juan Vicente
    Rafael Rodriguez-Galvan, Jose
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 377
  • [3] ERROR ESTIMATE OF A RANDOM PARTICLE BLOB METHOD FOR THE KELLER-SEGEL EQUATION
    Huang, Hui
    Liu, Jian-Guo
    MATHEMATICS OF COMPUTATION, 2017, 86 (308) : 2719 - 2744
  • [4] A STRONGLY DEGENERATE PARABOLIC AGGREGATION EQUATION
    Betancourt, F.
    Buerger, R.
    Karlsen, K. H.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2011, 9 (03) : 711 - 742
  • [5] A SECOND-ORDER NUMERICAL METHOD FOR THE AGGREGATION EQUATIONS
    Carrillo, Jose A.
    Fjordholm, Ulrik S.
    Solem, Susanne
    MATHEMATICS OF COMPUTATION, 2021, 90 (327) : 103 - 139
  • [6] Convergence of a linearly transformed particle method for aggregation equations
    Pinto, Martin Campos
    Carrillo, Jose A.
    Charles, Frederique
    Choi, Young-Pil
    NUMERISCHE MATHEMATIK, 2018, 139 (04) : 743 - 793
  • [7] SELF-SIMILAR BLOWUP SOLUTIONS TO AN AGGREGATION EQUATION IN Rn
    Huang, Yanghong
    Bertozzi, Andrea L.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2010, 70 (07) : 2582 - 2603
  • [8] Optimal control for a two-sidedly degenerate aggregation equation
    Bendahmane, Mostafa
    Karami, Fahd
    Erraji, Elmahdi
    Atlas, Abdelghafour
    Afraites, Lekbir
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2023, 28 (04): : 780 - 803
  • [9] A conservative finite volume method for the population balance equation with aggregation, fragmentation, nucleation and growth
    O'Sullivan, Daniel
    Rigopoulos, Stelios
    CHEMICAL ENGINEERING SCIENCE, 2022, 263
  • [10] DISCRETE-IN-TIME RANDOM PARTICLE BLOB METHOD FOR THE KELLER-SEGEL EQUATION AND CONVERGENCE ANALYSIS
    Huang, Hui
    Liu, Jian-Guo
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (07) : 1821 - 1842