CONVERGENCE OF ADAPTIVE STOCHASTIC GALERKIN FEM

被引:13
作者
Bespalov, Alex [1 ]
Praetorius, Dirk [2 ]
Rocchi, Leonardo [1 ]
Ruggeri, Michele [3 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham, W Midlands, England
[2] TU Wien, Inst Anal & Sci Comp, Vienna, Austria
[3] Univ Vienna, Fac Math, Vienna, Austria
基金
英国工程与自然科学研究理事会; 奥地利科学基金会;
关键词
adaptive methods; a posteriori error analysis; two-level error estimate; stochastic Galerkin methods; finite element methods; parametric PDEs; NONPARAMETRIC DENSITY-ESTIMATION; POSTERIORI ERROR ANALYSIS; ELLIPTIC PROBLEMS; PDES;
D O I
10.1137/18M1229560
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and analyze novel adaptive algorithms for the numerical solution of elliptic partial differential equations with parametric uncertainty. Four different marking strategies are employed for refinement of stochastic Galerkin finite element approximations. The algorithms are driven by the energy error reduction estimates derived from two-level a posteriori error indicators for spatial approximations and hierarchical a posteriori error indicators for parametric approximations. The focus of this work is on the mathematical foundation of the adaptive algorithms in the sense of rigorous convergence analysis. In particular, we prove that the proposed algorithms drive the underlying energy error estimates to zero.
引用
收藏
页码:2359 / 2382
页数:24
相关论文
共 32 条
[1]  
Ainsworth M., 2000, PURE APPL MATH NEW Y, DOI DOI 10.1002/9781118032824
[2]  
[Anonymous], 2007, Comm. App. Math. Com. Sc.
[3]  
BABUSKA I, 1984, NUMER MATH, V44, P75, DOI 10.1007/BF01389757
[4]  
Bespalov A., 2019, STOCHASTIC T IFISS
[5]  
Bespalov A., 2018, CONVERGENCE ADAPTIVE
[6]   Goal-oriented error estimation and adaptivity for elliptic PDEs with parametric or uncertain inputs [J].
Bespalov, Alex ;
Praetorius, Dirk ;
Rocchi, Leonardo ;
Ruggeri, Michele .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 345 :951-982
[7]   Efficient Adaptive Algorithms for Elliptic PDEs with Random Data [J].
Bespalov, Alex ;
Rocchi, Leonardo .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (01) :243-272
[8]   EFFICIENT ADAPTIVE STOCHASTIC GALERKIN METHODS FOR PARAMETRIC OPERATOR EQUATIONS [J].
Bespalov, Alex ;
Silvester, David .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (04) :A2118-A2140
[9]   ENERGY NORM A POSTERIORI ERROR ESTIMATION FOR PARAMETRIC OPERATOR EQUATIONS [J].
Bespalov, Alex ;
Powell, Catherine E. ;
Silvester, David .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (02) :A339-A363
[10]   A POSTERIORI ERROR ANALYSIS OF PARAMETERIZED LINEAR SYSTEM USING SPECTRAL METHODS [J].
Butler, T. ;
Constantine, P. ;
Wildey, T. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2012, 33 (01) :195-209