Bloch state tomography using Wilson lines

被引:152
作者
Li, Tracy [1 ,2 ]
Duca, Lucia [1 ,2 ]
Reitter, Martin [1 ,2 ]
Grusdt, Fabian [3 ,4 ,5 ,6 ]
Demler, Eugene [6 ]
Endres, Manuel [6 ,7 ]
Schleier-Smith, Monika [8 ]
Bloch, Immanuel [1 ,2 ]
Schneider, Ulrich [1 ,2 ,9 ]
机构
[1] Univ Munich, Fak Phys, Schellingstr 4, D-80799 Munich, Germany
[2] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[3] Univ Kaiserslautern, Dept Phys, D-67663 Kaiserslautern, Germany
[4] Univ Kaiserslautern, Res Ctr OPTIMAS, D-67663 Kaiserslautern, Germany
[5] Grad Sch Mat Sci Mainz, Gottlieb Daimler Str 47, D-67663 Kaiserslautern, Germany
[6] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[7] CALTECH, Dept Phys, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[8] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[9] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
基金
美国国家科学基金会;
关键词
ATOMS; PHASE;
D O I
10.1126/science.aad5812
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Topology and geometry are essential to our understanding of modern physics, underlying many foundational concepts from high-energy theories, quantum information, and condensed-matter physics. In condensed-matter systems, a wide range of phenomena stem from the geometry of the band eigenstates, which is encoded in the matrix-valued-Wilson line for general multiband systems. Using an ultracold gas of rubidium atoms loaded in a honeycomb optical lattice, we realize strong-force dynamics in Bloch bands that are described by Wilson lines and observe an evolution in the band populations that directly reveals the band geometry. Our technique enables a full determination of band eigenstates, Berry curvature, and topological invariants, including single-and multiband Chern and Z(2) numbers.
引用
收藏
页码:1094 / 1097
页数:4
相关论文
共 44 条
[1]   Interferometric Approach to Measuring Band Topology in 2D Optical Lattices [J].
Abanin, Dmitry A. ;
Kitagawa, Takuya ;
Bloch, Immanuel ;
Demler, Eugene .
PHYSICAL REVIEW LETTERS, 2013, 110 (16)
[2]   Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms [J].
Aidelsburger, M. ;
Lohse, M. ;
Schweizer, C. ;
Atala, M. ;
Barreiro, J. T. ;
Nascimbene, S. ;
Cooper, N. R. ;
Bloch, I. ;
Goldman, N. .
NATURE PHYSICS, 2015, 11 (02) :162-166
[3]   Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices [J].
Aidelsburger, M. ;
Atala, M. ;
Lohse, M. ;
Barreiro, J. T. ;
Paredes, B. ;
Bloch, I. .
PHYSICAL REVIEW LETTERS, 2013, 111 (18)
[4]   Seeing Topological Order in Time-of-Flight Measurements [J].
Alba, E. ;
Fernandez-Gonzalvo, X. ;
Mur-Petit, J. ;
Pachos, J. K. ;
Garcia-Ripoll, J. J. .
PHYSICAL REVIEW LETTERS, 2011, 107 (23)
[5]   Wilson-loop characterization of inversion-symmetric topological insulators [J].
Alexandradinata, A. ;
Dai, Xi ;
Bernevig, B. Andrei .
PHYSICAL REVIEW B, 2014, 89 (15)
[6]  
Atala M, 2013, NAT PHYS, V9, P795, DOI [10.1038/nphys2790, 10.1038/NPHYS2790]
[7]   Dynamic optical superlattices with topological bands [J].
Baur, Stefan K. ;
Schleier-Smith, Monika H. ;
Cooper, Nigel R. .
PHYSICAL REVIEW A, 2014, 89 (05)
[8]   Bloch oscillations of atoms in an optical potential [J].
BenDahan, M ;
Peik, E ;
Reichel, J ;
Castin, Y ;
Salomon, C .
PHYSICAL REVIEW LETTERS, 1996, 76 (24) :4508-4511
[9]   Z2 Topological Insulators in Ultracold Atomic Gases [J].
Beri, B. ;
Cooper, N. R. .
PHYSICAL REVIEW LETTERS, 2011, 107 (14)
[10]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162