Differential evolution for protein crystallographic optimizations

被引:22
作者
McRee, DE [1 ]
机构
[1] ActiveSight & Mol Images, San Diego, CA 92121 USA
来源
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY | 2004年 / 60卷
关键词
D O I
10.1107/S0907444904025491
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Genetic algorithms are powerful optimizers that have been underutilized in protein crystallography, given that many crystallographic problems have characteristics that would benefit from these algorithms: non-linearity, interdependent parameters and a complex function landscape. These functions have been implemented for real-space optimizations in a new fitting program, MIfit, for real-space refinement of protein models and heavy-atom searches. Some programming tips and examples will be presented here to aid others who might want to use genetic algorithms in their own work.
引用
收藏
页码:2276 / 2279
页数:4
相关论文
共 5 条
[1]  
[Anonymous], 1999, NEW IDEAS OPTIMISATI
[2]  
CHISHOLM K, 1999, NEW IDEAS OPTIMIZATI, P147
[3]   Rapid automated molecular replacement by evolutionary search [J].
Kissinger, CR ;
Gehlhaar, DK ;
Fogel, DB .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 1999, 55 :484-491
[4]  
Price K., 1999, New ideas in optimization, P79
[5]  
STORN R, 1999, NEW IDEAS OPTIMIZATI, P109