GibbsCluster: unsupervised clustering and alignment of peptide sequences

被引:147
作者
Andreatta, Massimo [1 ]
Alvarez, Bruno [1 ]
Nielsen, Morten [1 ,2 ]
机构
[1] Univ Nacl San Martin, Inst Invest Biotecnol, RA-1650 San Martin, Argentina
[2] Tech Univ Denmark, Dept Bio & Hlth Informat, DK-2800 Lyngby, Denmark
基金
美国国家卫生研究院;
关键词
CLASS-I; MASS-SPECTROMETRY; RECOGNITION DOMAINS; SPECIFICITY; BINDING; IDENTIFICATION; PREDICTION; MOLECULES; EPITOPES; STRATEGY;
D O I
10.1093/nar/gkx248
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Receptor interactions with short linear peptide fragments (ligands) are at the base of many biological signaling processes. Conserved and information-rich amino acid patterns, commonly called sequence motifs, shape and regulate these interactions. Because of the properties of a receptor-ligand system or of the assay used to interrogate it, experimental data often contain multiple sequence motifs. GibbsCluster is a powerful tool for unsupervised motif discovery because it can simultaneously cluster and align peptide data. The GibbsCluster 2.0 presented here is an improved version incorporating insertion and deletions accounting for variations in motif length in the peptide input. In basic terms, the program takes as input a set of peptide sequences and clusters them into meaningful groups. It returns the optimal number of clusters it identified, together with the sequence alignment and sequence motif characterizing each cluster. Several parameters are available to customize cluster analysis, including adjustable penalties for small clusters and overlapping groups and a trash cluster to remove outliers. As an example application, we used the server to deconvolute multiple specificities in large-scale peptidome data generated by mass spectrometry. The server is available at http://www.cbs.dtu.dk/services/GibbsCluster-2.0.
引用
收藏
页码:W458 / W463
页数:6
相关论文
共 22 条
[1]   Gapped sequence alignment using artificial neural networks: application to the MHC class I system [J].
Andreatta, Massimo ;
Nielsen, Morten .
BIOINFORMATICS, 2016, 32 (04) :511-517
[2]   Simultaneous alignment and clustering of peptide data using a Gibbs sampling approach [J].
Andreatta, Massimo ;
Lund, Ole ;
Nielsen, Morten .
BIOINFORMATICS, 2013, 29 (01) :8-14
[3]   Unsupervised HLA Peptidome Deconvolution Improves Ligand Prediction Accuracy and Predicts Cooperative Effects in Peptide-HLA Interactions [J].
Bassani-Sternberet, Michal ;
Gfellert, David .
JOURNAL OF IMMUNOLOGY, 2016, 197 (06) :2492-2499
[4]   Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry [J].
Bassani-Sternberg, Michal ;
Braunlein, Eva ;
Klar, Richard ;
Engleitner, Thomas ;
Sinitcyn, Pavel ;
Audehm, Stefan ;
Straub, Melanie ;
Weber, Julia ;
Slotta-Huspenina, Julia ;
Specht, Katja ;
Martignoni, Marc E. ;
Werner, Angelika ;
Hein, Rudiger ;
Busch, Dirk H. ;
Peschel, Christian ;
Rad, Roland ;
Cox, Jurgen ;
Mann, Matthias ;
Krackhardt, Angela M. .
NATURE COMMUNICATIONS, 2016, 7
[5]   Mass Spectrometry of Human Leukocyte Antigen Class I Peptidomes Reveals Strong Effects of Protein Abundance and Turnover on Antigen Presentation [J].
Bassani-Sternberg, Michal ;
Pletscher-Frankild, Sune ;
Jensen, Lars Juhl ;
Mann, Matthias .
MOLECULAR & CELLULAR PROTEOMICS, 2015, 14 (03) :658-673
[6]  
Caron E, 2015, MOL CELL PROTEOMICS, V14, P3105, DOI [10.1074/mcp.O115.052431, 10.1074/mcp.M115.052431]
[7]   ELM 2016-data update and new functionality of the eukaryotic linear motif resource [J].
Dinkel, Holger ;
Van Roey, Kim ;
Michael, Sushama ;
Kumar, Manjeet ;
Uyar, Bora ;
Altenberg, Brigitte ;
Milchevskaya, Vladislava ;
Schneider, Melanie ;
Kuehn, Helen ;
Behrendt, Annika ;
Dahl, Sophie Luise ;
Damerell, Victoria ;
Diebel, Sandra ;
Kalman, Sara ;
Klein, Steffen ;
Knudsen, Arne C. ;
Maeder, Christina ;
Merrill, Sabina ;
Staudt, Angelina ;
Thiel, Vera ;
Welti, Lukas ;
Davey, Norman E. ;
Diella, Francesca ;
Gibson, Toby J. .
NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) :D294-D300
[8]   Uncovering new aspects of protein interactions through analysis of specificity landscapes in peptide recognition domains [J].
Gfeller, David .
FEBS LETTERS, 2012, 586 (17) :2764-2772
[9]   The multiple-specificity landscape of modular peptide recognition domains [J].
Gfeller, David ;
Butty, Frank ;
Wierzbicka, Marta ;
Verschueren, Erik ;
Vanhee, Peter ;
Huang, Haiming ;
Ernst, Andreas ;
Dar, Nisa ;
Stagljar, Igor ;
Serrano, Luis ;
Sidhu, Sachdev S. ;
Bader, Gary D. ;
Kim, Philip M. .
MOLECULAR SYSTEMS BIOLOGY, 2011, 7
[10]   DETECTING SUBTLE SEQUENCE SIGNALS - A GIBBS SAMPLING STRATEGY FOR MULTIPLE ALIGNMENT [J].
LAWRENCE, CE ;
ALTSCHUL, SF ;
BOGUSKI, MS ;
LIU, JS ;
NEUWALD, AF ;
WOOTTON, JC .
SCIENCE, 1993, 262 (5131) :208-214