FINITE ELEMENT/HOLOMORPHIC OPERATOR FUNCTION METHOD FOR THE TRANSMISSION EIGENVALUE PROBLEM

被引:9
|
作者
Gong, Bo [1 ]
Sun, Jiguang [2 ]
Turner, Tiara [3 ]
Zheng, Chunxiong [4 ,5 ]
机构
[1] Beijing Univ Technol, Beijing 100124, Peoples R China
[2] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
[3] Univ Maryland Eastern Shore, Dept Math & Comp Sci, Princess Anne, MD 21853 USA
[4] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[5] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
APPROXIMATION;
D O I
10.1090/mcom/3767
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The transmission eigenvalue problem arises from the inverse scattering theory for inhomogeneous media. It plays a key role in the unique determination of inhomogeneous media. Furthermore, transmission eigenvalues can be reconstructed from the scattering data and used to estimate the material properties of the unknown object. The problem is posted as a system of two second order partial differential equations and is nonlinear and non-selfadjoint. It is challenging to develop effective numerical methods. In this paper, we formulate the transmission eigenvalue problem as the eigenvalue problem of a holomorphic operator function. The Lagrange finite elements are used for the discretization and the convergence is proved using the abstract approximation theory for holomorphic Fredholm operator functions. The spectral indicator method is employed to compute the eigenvalues. Numerical examples are presented to validate the proposed method.
引用
收藏
页码:2517 / 2537
页数:21
相关论文
共 50 条
  • [31] FINITE ELEMENT EIGENVALUE ENCLOSURES FOR THE MAXWELL OPERATOR
    Barrenechea, G. R.
    Boulton, L.
    Boussaid, N.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (06): : A2887 - A2906
  • [32] A High Accuracy Nonconforming Finite Element Scheme for Helmholtz Transmission Eigenvalue Problem
    Yingxia Xi
    Xia Ji
    Shuo Zhang
    Journal of Scientific Computing, 2020, 83
  • [33] A High Accuracy Nonconforming Finite Element Scheme for Helmholtz Transmission Eigenvalue Problem
    Xi, Yingxia
    Ji, Xia
    Zhang, Shuo
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (03)
  • [34] Virtual element method for the Helmholtz transmission eigenvalue problem of anisotropic media
    Meng, Jian
    Mei, Liquan
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (08): : 1493 - 1529
  • [35] Solution of an eigenvalue problem using trigonometric interpolation by finite element method
    Ahammad, M.U.
    Mollah, Md. Shirazul Hoque
    Obayedullah, Md.
    International Journal of Applied Mathematics and Statistics, 2011, 23 (D11): : 98 - 104
  • [36] An Efficient Algorithm with Stabilized Finite Element Method for the Stokes Eigenvalue Problem
    Weng, Zhifeng
    Cai, Yaoxiong
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [37] The adaptive finite element method for the Steklov eigenvalue problem in inverse scattering
    Zhang, Yu
    Bi, Hai
    Yang, Yidu
    OPEN MATHEMATICS, 2020, 18 : 216 - 236
  • [38] Solution of an Eigenvalue Problem using Trigonometric Interpolation by Finite Element Method
    Ahammad, M. U.
    Mollah, Md. Shirazul Hoque
    Obayedullah, Md.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2011, 23 (D11): : 98 - 104
  • [39] A FINITE ELEMENT METHOD FOR A CURLCURL-GRADDIV EIGENVALUE INTERFACE PROBLEM
    Duan, Huoyuan
    Lin, Ping
    Tan, Roger C. E.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (02) : 1193 - 1228
  • [40] Finite Element Approximation of the Minimal Eigenvalue of a Nonlinear Eigenvalue Problem
    Solov’ev S.I.
    Solov’ev P.S.
    Lobachevskii Journal of Mathematics, 2018, 39 (7) : 949 - 956