Synthesis and characterization of (3-Aminopropyl)trimethoxy-silane (APTMS) functionalized Gd2O3:Eu3+ red phosphor with enhanced quantum yield

被引:34
作者
Jain, Akhil [1 ]
Hirata, G. A. [2 ]
Farias, M. H. [2 ]
Castillon, F. F. [2 ]
机构
[1] Ctr Invest Cient & Educ Super Ensenada, Posgrad Fis Mat, Carretera Ensenada Tijuana 3918, Ensenada 22860, Baja California, Mexico
[2] Univ Nacl Autonoma Mexico, Ctr Nanociencias & Nanotecnol, Km 107 Carretera Tijuana Ensenada, Ensenada 22860, Baja California, Mexico
关键词
nanophosphor; surface functionalization; (3-aminopropyl) trimethoxysilane; quantum yield; LUMINESCENCE PROPERTIES; PHOTOLUMINESCENCE PROPERTIES; SILICA NANOPARTICLES; SURFACE MODIFICATION; DRUG-DELIVERY; SIZE; BEADS; DOTS;
D O I
10.1088/0957-4484/27/6/065601
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report the surface modification of nanocrystalline Gd2O3:Eu3+ phosphor by (3-Aminopropyl) trimethoxysilane (APTMS). The nanoparticles were first coated with silica using the Stober process, and then annealed at 650 degrees C for 2 h. Afterwards, APTMS was functionalized onto the silica layer to obtain Gd2O3:Eu3+ nanoparticles bearing amine groups on the surface. The effect of silica coating, and the subsequent annealing process on the crystallization of the nanophosphor were analyzed by x-ray diffraction (XRD). High-resolution transmission electron microscopy (HR-TEM) confirmed the presence of a silica layer of similar to 45 nm thickness. X-ray photoelectron (XPS) and Fourier transform infrared (FTIR) spectroscopy confirmed the presence of silica and the amine groups. Photoluminescence (PL) analysis demonstrated an increased emission after functionalization of nanoparticles. Absolute quantum yield (QY) measurements revealed an 18% enhancement in QY in functionalized nanoparticles compared with unmodified nanoparticles, which is of great importance for their biomedical applications.
引用
收藏
页数:12
相关论文
共 52 条
[1]   Molecular Structure of 3-Aminopropyltriethoxysilane Layers Formed on Silanol-Terminated Silicon Surfaces [J].
Acres, Robert G. ;
Ellis, Amanda V. ;
Alvino, Jason ;
Lenehan, Claire E. ;
Khodakov, Dmitriy A. ;
Metha, Gregory F. ;
Andersson, Gunther G. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (10) :6289-6297
[2]   Cathodoluminescence from a device of carbon nanotube-field emission display with ZnO nanocluster phosphor [J].
Antony, Jiji ;
Qiang, You .
NANOTECHNOLOGY, 2007, 18 (29)
[3]   Tagging of avidin immobilized beads with biotinylated YAG:Ce3+ nanocrystal phosphor [J].
Asakura, Ryo ;
Isobe, Tetsuhiko ;
Kurokawa, Kiyoshi ;
Aizawa, Hideki ;
Ohkubo, Michio .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2006, 386 (06) :1641-1647
[4]   Luminescent enhancement in europium-doped yttria nanotubes coated with yttria [J].
Bai, X ;
Song, HW ;
Pan, GH ;
Liu, ZX ;
Lu, SZ ;
Di, WH ;
Ren, XG ;
Lei, YQ ;
Dai, QL ;
Fan, LB .
APPLIED PHYSICS LETTERS, 2006, 88 (14)
[5]  
Bass M., 1994, Devices, Measurements, and Properties, V2
[6]   Biological Applications of Rare-Earth Based Nanoparticles [J].
Bouzigues, Cedric ;
Gacoin, Thierry ;
Alexandrou, Antigoni .
ACS NANO, 2011, 5 (11) :8488-8505
[7]   In vitro cytotoxicity evaluation of biomedical nanoparticles and their extracts [J].
Das, Gautom Kumar ;
Chan, Peggy P. Y. ;
Teo, Ailing ;
Loo, Joachim Say Chye ;
Anderson, James M. ;
Tan, Timothy Thatt Yang .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2010, 93A (01) :337-346
[8]   Drug delivery and nanoparticles: Applications and hazards [J].
De Jong, Wim H. ;
Borm, Paul J. A. .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2008, 3 (02) :133-149
[9]   Effect of Li+-ion on enhancement of photoluminescence in Gd2O3:Eu3+ nanophosphors prepared by combustion technique [J].
Dhananjaya, N. ;
Nagabhushana, H. ;
Nagabhushana, B. M. ;
Rudraswamy, B. ;
Shivakumara, C. ;
Chakradhar, R. P. S. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (05) :2368-2374
[10]  
Dosev D, 2008, J NANOSCI NANOTECHNO, V8, P1052, DOI 10.1166/jnn.2008.304