Computation of multi-region, relaxed magnetohydrodynamic equilibria with prescribed toroidal current profile

被引:9
作者
Baillod, A. [1 ]
Loizu, J. [1 ]
Qu, Z. S. [2 ]
Kumar, A. [2 ]
Graves, J. P. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland
[2] Australian Natl Univ, Math Sci Inst, Canberra, ACT 2601, Australia
关键词
plasma confinement; fusion plasma; PLASMA; PRESSURE; GENERATION; RELAXATION;
D O I
10.1017/S0022377821000520
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The stepped-pressure equilibrium code (SPEC) (Hudson et al., Phys. Plasmas, vol. 19, issue 11, 2012, 112502) is extended to allow the computation of multi-region, relaxed magnetohydrodynamics (MRxMHD) equilibria at prescribed toroidal current profile. Toroidal currents are expressed in the framework of the MRxMHD theory, exhibiting spatial separation between pressure driven and externally driven currents. Additionally, analytical force balance derivatives at constant toroidal current are deployed in order to maintain SPEC's advantageous speed. The newly implemented capability is verified in screw pinch and classical stellarator geometries, and is applied to obtain the equilibrium beta-limit of a classical stellarator without net toroidal currents. This new capability opens the possibility to study the effect of toroidal current on three-dimensional equilibria with the SPEC code.
引用
收藏
页数:23
相关论文
共 48 条
[1]  
Abramowitz M., 1972, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, V10th ed.
[2]   Multi-region relaxed magnetohydrodynamics with anisotropy and flow [J].
Dennis, G. R. ;
Hudson, S. R. ;
Dewar, R. L. ;
Hole, M. J. .
PHYSICS OF PLASMAS, 2014, 21 (07)
[3]   Minimally Constrained Model of Self-Organized Helical States in Reversed-Field Pinches [J].
Dennis, G. R. ;
Hudson, S. R. ;
Terranova, D. ;
Franz, P. ;
Dewar, R. L. ;
Hole, M. J. .
PHYSICAL REVIEW LETTERS, 2013, 111 (05)
[4]   The infinite interface limit of multiple-region relaxed magnetohydrodynamics [J].
Dennis, G. R. ;
Hudson, S. R. ;
Dewar, R. L. ;
Hole, M. J. .
PHYSICS OF PLASMAS, 2013, 20 (03)
[5]   Time-dependent relaxed magnetohydrodynamics: Inclusion of cross helicity constraint using phase-space action [J].
Dewar, R. L. ;
Burby, J. W. ;
Qu, Z. S. ;
Sato, N. ;
Hole, M. J. .
PHYSICS OF PLASMAS, 2020, 27 (06)
[6]   The spectrum of multi-region-relaxed magnetohydrodynamic modes in topologically toroidal geometry [J].
Dewar, R. L. ;
Tuen, L. H. ;
Hole, M. J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (04)
[7]   Variational formulation of relaxed and multi-region relaxed magnetohydrodynamics [J].
Dewar, R. L. ;
Yoshida, Z. ;
Bhattacharjee, A. ;
Hudson, S. R. .
JOURNAL OF PLASMA PHYSICS, 2015, 81
[8]   PIES free boundary stellarator equilibria with improved initial conditions [J].
Drevlak, M ;
Monticello, D ;
Reiman, A .
NUCLEAR FUSION, 2005, 45 (07) :731-740
[9]  
FORNBERG B, 1988, MATH COMPUT, V51, P699, DOI 10.1090/S0025-5718-1988-0935077-0
[10]  
Freidberg J, 2014, IDEAL MHD, P1, DOI 10.1017/CBO9780511795046