From a kinetic equation to a diffusion under an anomalous scaling

被引:5
作者
Basile, Giada [1 ]
机构
[1] Univ Roma La Sapienza, I-00185 Rome, Italy
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2014年 / 50卷 / 04期
关键词
Anomalous thermal conductivity; Kinetic limit; Invariance principle; CENTRAL LIMIT-THEOREMS; ENERGY-TRANSPORT; CONVERGENCE;
D O I
10.1214/13-AIHP554
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A linear Boltzmann equation is interpreted as the forward equation for the probability density of a Markov process (K (t), i (t), Y (t)) on (T-2 x {1, 2} x R-2), where T-2 is the two-dimensional torus. Here (K (t), i (t)) is an autonomous reversible jump process, with waiting times between two jumps with finite expectation value but infinite variance. Y (t) is an additive functional of K, defined as integral(t)(0) v(K (s)) ds, where |v| similar to 1 for small k. We prove that the rescaled process (N In N)Y-1/2 (Nt) converges in distribution to a two-dimensional Brownian motion. As a consequence, the appropriately rescaled solution of the Boltzmann equation converges to the solution of a diffusion equation.
引用
收藏
页码:1301 / 1322
页数:22
相关论文
共 50 条
[31]   A fourth-order compact solution of the two-dimensional modified anomalous fractional sub-diffusion equation with a nonlinear source term [J].
Abbaszadeh, Mostafa ;
Mohebbi, Akbar .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (08) :1345-1359
[32]   DIFFUSION AND KINETIC TRANSPORT WITH VERY WEAK CONFINEMENT [J].
Bouin, Emeric ;
Dolbeault, Jean ;
Schmeiser, Christian .
KINETIC AND RELATED MODELS, 2020, 13 (02) :345-371
[33]   A Fourier method for the fractional diffusion equation describing sub-diffusion [J].
Chen, Chang-Ming ;
Liu, F. ;
Turner, I. ;
Anh, V. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (02) :886-897
[34]   Anomalous dispersion, renormalization groups, scaling laws and classification: A reflection on recent efforts [J].
Cushman, John H. ;
O'Malley, Daniel ;
Park, Moongyu .
ADVANCES IN WATER RESOURCES, 2013, 62 :207-214
[35]   Pointwise Bounds for the Solutions of the Smoluchowski Equation with Diffusion [J].
Rezakhanlou, Fraydoun .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 212 (03) :1011-1035
[36]   Compact θ-method for the generalized delay diffusion equation [J].
Zhang, Qifeng ;
Chen, Mengzhe ;
Xu, Yinghong ;
Xu, Dinghua .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 316 :357-369
[37]   Numerical solution for an aggregation equation with degenerate diffusion [J].
Carlos Cabrales, Roberto ;
Gutierrez-Santacreu, Juan Vicente ;
Rafael Rodriguez-Galvan, Jose .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 377
[38]   The degeneracy of a fast-diffusion equation and stability [J].
Qi, YW .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (02) :476-485
[39]   Freeform surface filtering using the diffusion equation [J].
Jiang, X. ;
Cooper, P. ;
Scott, P. J. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2127) :841-859
[40]   Finslerian Diffusion and the Bloch-Torrey Equation [J].
Dela Haije, T. C. J. ;
Fuster, A. ;
Florack, L. M. J. .
VISUALIZATION AND PROCESSING OF HIGHER ORDER DESCRIPTORS FOR MULTI-VALUED DATA, 2015, :21-35