From a kinetic equation to a diffusion under an anomalous scaling

被引:5
作者
Basile, Giada [1 ]
机构
[1] Univ Roma La Sapienza, I-00185 Rome, Italy
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2014年 / 50卷 / 04期
关键词
Anomalous thermal conductivity; Kinetic limit; Invariance principle; CENTRAL LIMIT-THEOREMS; ENERGY-TRANSPORT; CONVERGENCE;
D O I
10.1214/13-AIHP554
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A linear Boltzmann equation is interpreted as the forward equation for the probability density of a Markov process (K (t), i (t), Y (t)) on (T-2 x {1, 2} x R-2), where T-2 is the two-dimensional torus. Here (K (t), i (t)) is an autonomous reversible jump process, with waiting times between two jumps with finite expectation value but infinite variance. Y (t) is an additive functional of K, defined as integral(t)(0) v(K (s)) ds, where |v| similar to 1 for small k. We prove that the rescaled process (N In N)Y-1/2 (Nt) converges in distribution to a two-dimensional Brownian motion. As a consequence, the appropriately rescaled solution of the Boltzmann equation converges to the solution of a diffusion equation.
引用
收藏
页码:1301 / 1322
页数:22
相关论文
共 50 条
[21]   Coagulation dynamics under environmental noise: Scaling limit to SPDE [J].
Flandoli, Franco ;
Huang, Ruojun .
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2022, 19 (02) :1241-1292
[22]   Finite element approximation for a modified anomalous subdiffusion equation [J].
Liu, Q. ;
Liu, F. ;
Turner, I. ;
Anh, V. .
APPLIED MATHEMATICAL MODELLING, 2011, 35 (08) :4103-4116
[23]   Anomalous diffusion in stochastic systems with nonhomogeneously distributed traps [J].
Srokowski, Tomasz .
PHYSICAL REVIEW E, 2015, 91 (05)
[24]   Numerical investigation of the nonlinear modified anomalous diffusion process [J].
O. Nikan ;
J. A. Tenreiro Machado ;
A. Golbabai ;
T. Nikazad .
Nonlinear Dynamics, 2019, 97 :2757-2775
[25]   Anomalous fluctuations of extremes in many-particle diffusion [J].
Hass, Jacob B. ;
Carroll-Godfrey, Aileen N. ;
Corwin, Ivan ;
Corwin, Eric I. .
PHYSICAL REVIEW E, 2023, 107 (02)
[26]   AN EFFICIENT LOCALIZED COLLOCATION SOLVER FOR ANOMALOUS DIFFUSION ON SURFACES [J].
Tang, Zhuochao ;
Fu, Zhuojia ;
Sun, HongGuang ;
Liu, Xiaoting .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (03) :865-894
[27]   Numerical investigation of the nonlinear modified anomalous diffusion process [J].
Nikan, O. ;
Machado, J. A. Tenreiro ;
Golbabai, A. ;
Nikazad, T. .
NONLINEAR DYNAMICS, 2019, 97 (04) :2757-2775
[28]   Coagulation, diffusion and the continuous Smoluchowski equation [J].
Yaghouti, Mohammad Reza ;
Rezakhanlou, Fraydoun ;
Hammond, Alan .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (09) :3042-3080
[29]   Asymptotic Behavior of Solutions to the Diffusion Equation [J].
Engu, Satyanarayana ;
Mohd, Ahmed ;
Sahoo, Manas Ranjan .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2018, 49 (04) :601-620
[30]   Solution of two-dimensional modified anomalous fractional sub-diffusion equation via radial basis functions (RBF) meshless method [J].
Mohebbi, Akbar ;
Abbaszadeh, Mostafa ;
Dehghan, Mehdi .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2014, 38 :72-82