Exploring the effect of ascertainment bias on genetic studies that use clinical pedigrees

被引:16
作者
Ranola, John Michael O. [1 ]
Tsai, Ginger J. [1 ]
Shirts, Brian H. [1 ]
机构
[1] Univ Washington, Dept Lab Med, Seattle, WA 98109 USA
关键词
BREAST-CANCER; ESTIMATING PENETRANCE; MUTATION CARRIERS; SEQUENCE VARIANTS; BRCA1; RISK;
D O I
10.1038/s41431-019-0467-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent studies have reported novel cancer risk associations with incidentally tested genes on cancer risk panels using clinically ascertained cohorts. Clinically ascertained pedigrees may have unknown ascertainment biases for both patients and relatives. We used a method to assess gene and variant risk and ascertainment bias based on comparing the number of observed disease instances in a pedigree given the sex and ages of individuals with those expected given established population incidence. We assessed the performance characteristics of the method by simulating families with varying genetic risk and proportion of individuals genotyped. We implemented this method using SEER cancer incidence data to assess clinical ascertainment bias in a set of 42 pedigrees with clinical testing ordered for either breast/ovarian cancer or colorectal/endometrial cancer at the University of Washington and negative sequencing results. In addition to expected biases consistent with the stated testing purpose, there were trends suggesting increased colorectal and endometrial cancer in pedigrees tested for breast cancer risk and trends suggesting increased breast cancer in families tested for colon cancer risk. There was no observed selection bias for prostate cancer in this set of families. This analysis illustrates that clinically ascertained data sets may have subtle biases. In the future, researchers seeking to explore risk associations with clinical data sets could assess potential ascertainment bias by comparing incidence of disease in families that test negative under given ordering criteria to expected population disease frequencies. Failure to assess for ascertainment bias increases the risk of false genetic associations.
引用
收藏
页码:1800 / 1807
页数:8
相关论文
共 34 条
[1]  
Bell FC, 1992, ACTUARIAL STUDY
[2]   Meta-analysis of BRCA1 and BRCA2 penetrance [J].
Chen, Sining ;
Parmigiani, Giovanni .
JOURNAL OF CLINICAL ONCOLOGY, 2007, 25 (11) :1329-1333
[3]   Associations Between Cancer Predisposition Testing Panel Genes and Breast Cancer [J].
Couch, Fergus J. ;
Shimelis, Hermela ;
Hu, Chunling ;
Hart, Steven N. ;
Polley, Eric C. ;
Na, Jie ;
Hallberg, Emily ;
Moore, Raymond ;
Thomas, Abigail ;
Lilyquist, Jenna ;
Feng, Bingjian ;
McFarland, Rachel ;
Pesaran, Tina ;
Huether, Robert ;
LaDuca, Holly ;
Chao, Elizabeth C. ;
Goldgar, David E. ;
Dolinsky, Jill S. .
JAMA ONCOLOGY, 2017, 3 (09) :1190-1196
[4]   A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes [J].
Easton, Douglas F. ;
Deffenbaugh, Amie M. ;
Pruss, Dmitry ;
Frye, Cynthia ;
Wenstrup, Richard J. ;
Allen-Brady, Kristina ;
Tavtigian, Sean V. ;
Monteiro, Alvaro N. A. ;
Iversen, Edwin S. ;
Couch, Fergus J. ;
Goldgar, David E. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2007, 81 (05) :873-883
[5]   Multigene Panel Testing Provides a New Perspective on Lynch Syndrome [J].
Espenschied, Carin R. ;
LaDuca, Holly ;
Li, Shuwei ;
McFarland, Rachel ;
Gau, Chia-Ling ;
Hampel, Heather .
JOURNAL OF CLINICAL ONCOLOGY, 2017, 35 (22) :2568-+
[6]   Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families [J].
Ford, D ;
Easton, DF ;
Stratton, M ;
Narod, S ;
Goldgar, D ;
Devilee, P ;
Bishop, DT ;
Weber, B ;
Lenoir, G ;
Chang-Claude, J ;
Sobol, H ;
Teare, MD ;
Struewing, J ;
Arason, A ;
Scherneck, S ;
Peto, J ;
Rebbeck, TR ;
Tonin, P ;
Neuhausen, S ;
Barkardottir, R ;
Eyfjord, J ;
Lynch, H ;
Ponder, BAJ ;
Gayther, SA ;
Birch, JM ;
Lindblom, A ;
Stoppa-Lyonnet, D ;
Bignon, Y ;
Borg, A ;
Hamann, U ;
Haites, N ;
Scott, RJ ;
Maugard, CM ;
Vasen, H .
AMERICAN JOURNAL OF HUMAN GENETICS, 1998, 62 (03) :676-689
[7]   Optimal designs for estimating penetrance of rare mutations of a disease-susceptibility gene [J].
Gong, G ;
Whittemore, AS .
GENETIC EPIDEMIOLOGY, 2003, 24 (03) :173-180
[8]   PMS2 monoallelic mutation carriers: the known unknown [J].
Goodenberger, McKinsey L. ;
Thomas, Brittany C. ;
Riegert-Johnson, Douglas ;
Boland, C. Richard ;
Plon, Sharon E. ;
Clendenning, Mark ;
Win, Aung Ko ;
Senter, Leigha ;
Lipkin, Steven M. ;
Stadler, Zsofia K. ;
Macrae, Finlay A. ;
Lynch, Henry T. ;
Weitzel, Jeffrey N. ;
de la Chapelle, Albert ;
Syngal, Sapna ;
Lynch, Patrick ;
Parry, Susan ;
Jenkins, Mark A. ;
Gallinger, Steven ;
Holter, Spring ;
Aronson, Melyssa ;
Newcomb, Polly A. ;
Burnett, Terrilea ;
Le Marchand, Loic ;
Pichurin, Pavel ;
Hampel, Heather ;
Terdiman, Jonathan P. ;
Lu, Karen H. ;
Thibodeau, Stephen ;
Lindor, Noralane M. .
GENETICS IN MEDICINE, 2016, 18 (01) :13-19
[9]   On computing the distribution function for the Poisson binomial distribution [J].
Hong, Yili .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 59 :41-51
[10]   Bias and efficiency in family-based gene-characterization studies: Conditional, prospective, retrospective, and joint likelihoods [J].
Kraft, P ;
Thomas, DC .
AMERICAN JOURNAL OF HUMAN GENETICS, 2000, 66 (03) :1119-1131