A trace formula and high-energy spectral asymptotics for the perturbed Landau Hamiltonian

被引:28
作者
Korotyaev, E [1 ]
Pushnitski, A
机构
[1] Loughborough Univ Technol, Dept Math Sci, Loughborough LE11 3TU, Leics, England
[2] Humboldt Univ, Inst Math, D-12489 Berlin, Germany
基金
英国工程与自然科学研究理事会;
关键词
Schrodinger operator; magnetic field; trace formula; Landau level; high-energy asymptotics;
D O I
10.1016/j.jfa.2004.03.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A two-dimensional Schrodinger operator with a constant magnetic field perturbed by a smooth compactly supported potential is considered. The spectrum of this operator consists of eigenvalues which accumulate to the Landau levels. We call the set of eigenvalues near the nth Landau level an nth eigenvalue cluster, and study the distribution of eigenvalues in the nth cluster as n --> infinity. A complete asymptotic expansion for the eigenvalue moments in the nth cluster is obtained and some coefficients of this expansion are computed. A trace formula involving the eigenvalue moments is obtained. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:221 / 248
页数:28
相关论文
共 16 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F
[2]  
AGMON S., 1975, Ann. Sc. Norm. Super. Pisa, Cl. Sci., V2, P151
[3]   SCHRODINGER OPERATORS WITH MAGNETIC-FIELDS .1. GENERAL INTERACTIONS [J].
AVRON, J ;
HERBST, I ;
SIMON, B .
DUKE MATHEMATICAL JOURNAL, 1978, 45 (04) :847-883
[4]  
BIRMAN MS, 1977, USP MAT NAUK, V32, P17
[5]   Precise spectral asymptotics for perturbed magnetic Schrodinger operator [J].
Boyarchenko, SI ;
Levendorskii, SZ .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (03) :211-236
[6]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, VII
[7]  
FAZULLIN ZY, 2002, J MATH SCI NEW YORK, V108, P608
[8]  
Hempel R, 1998, J MATH PHYS, V39, P63, DOI 10.1063/1.532308
[9]  
Krein M. G., 1953, MAT SBORNIK, V33, P597
[10]  
Landau L. D., 1958, COURSE THEORETICAL P, V3