Maximal regularity of the Stokes system with Navier boundary condition in general unbounded domains

被引:4
作者
Farwig, Reinhard [1 ]
Rosteck, Veronika [1 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
关键词
Stokes operator; maximal regularity; Navier boundary condition; Robin boundary condition; general unbounded domains; spaces (L)over-tilde(q)(Omega); H-INFINITY-CALCULUS; L-Q-SPACES; RESOLVENT ESTIMATE; WEAK SOLUTIONS; OPERATOR; EQUATIONS;
D O I
10.2969/jmsj/81038103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the instationary Stokes system in general unbounded domains Omega subset of R-n, n >= 2, with boundary of uniform class C-3, and Navier slip or Robin boundary condition. The main result of this article is the maximal regularity of the Stokes operator in function spaces of the type (L) over tilde (q) defined as L-q boolean AND L-2 when q >= 2, but as L-q + L-2 when 1 < q < 2, adapted to the unboundedness of the domain.
引用
收藏
页码:1293 / 1319
页数:27
相关论文
共 38 条
  • [1] On a resolvent estimate of the Stokes equation on an infinite layer
    Abe, T
    Shibata, Y
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2003, 55 (02) : 469 - 497
  • [2] Abels H, 2005, DIFFER INTEGRAL EQU, V18, P1081
  • [3] [Anonymous], 1986, DOKL AKAD NAUK SSSR+
  • [4] [Anonymous], 1995, ABSTRACT LINEAR THEO
  • [5] CANNARSA P, 1986, B UNIONE MAT ITAL, V5B, P165
  • [6] de Simon L., 1964, REND SEMIN MAT U PAD, V34, P205
  • [7] GENERALIZED RESOLVENT ESTIMATES FOR THE STOKES SYSTEM IN BOUNDED AND UNBOUNDED-DOMAINS
    FARWIG, R
    SOHR, H
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1994, 46 (04) : 607 - 643
  • [8] Farwig R., 2008, , Functional Analysis and Evolution Equations, P257
  • [9] Farwig R., 2018, HDB MATH ANAL MECH V, P419, DOI DOI 10.1007/978-3-319-13344-7
  • [10] Farwig R., 2007, KYOT C NAV STOK EQ T, P79