Numerical study of a macroscopic finite pulse model of the diffusion MRI signal

被引:20
作者
Li, Jing-Rebecca [1 ]
Hang Tuan Nguyen [2 ]
Dang Van Nguyen [1 ]
Haddar, Houssem [1 ]
Coatleven, Julien [1 ]
Le Bihan, Denis [2 ]
机构
[1] Ecole Polytech, INRIA Saclay Equipe DEFI CMAP, F-91128 Palaiseau, France
[2] CEA Saclay Ctr, NeuroSpin, F-91191 Gif Sur Yvette, France
关键词
Diffusion MRI; Signal model; Homogenization; Effective medium; Macroscopic model; Karger model; DUAL-POROSITY SYSTEMS; WATER DIFFUSION; WHITE-MATTER; HUMAN BRAIN; GRAVITATIONAL FORCES; RESTRICTED DIFFUSION; FIELD GRADIENT; OPTIC-NERVE; EXCHANGE; NMR;
D O I
10.1016/j.jmr.2014.09.004
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Diffusion magnetic resonance imaging (dMRI) is an imaging modality that probes the diffusion characteristics of a sample via the application of magnetic field gradient pulses. The dMRI signal from a heterogeneous sample includes the contribution of the water proton magnetization from all spatial positions in a voxel. If the voxel can be spatially divided into different Gaussian diffusion compartments with inter-compartment exchange governed by linear kinetics, then the dMRI signal can be approximated using the macroscopic Karger model, which is a system of coupled ordinary differential equations (ODES), under the assumption that the duration of the diffusion-encoding gradient pulses is short compared to the diffusion time (the narrow pulse assumption). Recently, a new macroscopic model of the dMRI signal, without the narrow pulse restriction, was derived from the Bloch-Torrey partial differential equation (PDE) using periodic homogenization techniques. When restricted to narrow pulses, this new homogenized model has the same form as the Karger model. We conduct a numerical study of the new homogenized model for voxels that are made up of periodic copies of a representative volume that contains spherical and cylindrical cells of various sizes and orientations and show that the signal predicted by the new model approaches the reference signal obtained by solving the full Bloch-Torrey PDE in 0(82), where a is the ratio between the size of the representative volume and a measure of the diffusion length. When the narrow gradient pulse assumption is not satisfied, the new homogenized model offers a much better approximation of the full PDE signal than the Karger model. Finally, preliminary results of applying the new model to a voxel that is not made up of periodic copies of a representative volume are shown and discussed. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:54 / 65
页数:12
相关论文
共 50 条
  • [41] Rician Compressed Sensing for Fast and Stable Signal Reconstruction in Diffusion MRI
    Dolui, Sudipto
    Kuurstra, Alan
    Michailovich, Oleg V.
    [J]. MEDICAL IMAGING 2012: IMAGE PROCESSING, 2012, 8314
  • [42] Considerations and recommendations from the ISMRM diffusion study group for preclinical diffusion MRI: Part 2-Ex vivo imaging: Added value and acquisition
    Schilling, Kurt G.
    Grussu, Francesco
    Ianus, Andrada
    Hansen, Brian
    Howard, Amy F. D.
    Barrett, Rachel L. C.
    Aggarwal, Manisha
    Michielse, Stijn
    Nasrallah, Fatima
    Syeda, Warda
    Wang, Nian
    Veraart, Jelle
    Roebroeck, Alard
    Bagdasarian, Andrew F.
    Eichner, Cornelius
    Sepehrband, Farshid
    Zimmermann, Jan
    Soustelle, Lucas
    Bowman, Christien
    Tendler, Benjamin C.
    Hertanu, Andreea
    Jeurissen, Ben
    Verhoye, Marleen
    Frydman, Lucio
    van de Looij, Yohan
    Hike, David
    Dunn, Jeff F.
    Miller, Karla
    Landman, Bennett A.
    Shemesh, Noam
    Anderson, Adam
    Mckinnon, Emilie
    Farquharson, Shawna
    Dell'Acqua, Flavio
    Pierpaoli, Carlo
    Drobnjak, Ivana
    Leemans, Alexander
    Harkins, Kevin D.
    Descoteaux, Maxime
    Xu, Duan
    Huang, Hao
    Santin, Mathieu D.
    Grant, Samuel C.
    Obenaus, Andre
    Kim, Gene S.
    Wu, Dan
    Le Bihan, Denis
    Blackband, Stephen J.
    Ciobanu, Luisa
    Fieremans, Els
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2025, : 2535 - 2560
  • [43] Evaluation of the diffusion MRI white matter tract integrity model using myelin histology and Monte-Carlo simulations
    Zhou, Zihan
    Tong, Qiqi
    Zhang, Lei
    Ding, Qiuping
    Lu, Hui
    Jonkman, Laura E.
    Yao, Junye
    He, Hongjian
    Zhu, Keqing
    Zhong, Jianhui
    [J]. NEUROIMAGE, 2020, 223
  • [44] Estimating axon radius using diffusion-relaxation MRI: calibrating a surface-based relaxation model with histology
    Barakovic, Muhamed
    Pizzolato, Marco
    Tax, Chantal M. W.
    Rudrapatna, Umesh
    Magon, Stefano
    Dyrby, Tim B.
    Granziera, Cristina
    Thiran, Jean-Philippe
    Jones, Derek K.
    Canales-Rodriguez, Erick J.
    [J]. FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [45] LONGITUDINAL ANALYSIS OF DIFFUSION-WEIGHTED MRI WITH A BALL-AND-STICKS MODEL
    Arkesteijn, G. A. M.
    Poot, D. H. J.
    Niestijl, M.
    Vernooij, M. W.
    Niessen, W. J.
    van Vliet, L. J.
    Vos, F. M.
    [J]. 2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 783 - 786
  • [46] NMR signal for particles diffusing under potentials: From path integrals and numerical methods to a model of diffusion anisotropy
    Yolcu, Cem
    Memic, Muhammet
    Simsek, Kadir
    Westin, Carl-Fredrik
    Oezarslan, Evren
    [J]. PHYSICAL REVIEW E, 2016, 93 (05)
  • [47] The Study of Pedestrian Flow Based on a Macroscopic Model
    Jiang, Yanqun
    Zhou, Shuguang
    [J]. PROCEEDINGS OF THE 2013 THE INTERNATIONAL CONFERENCE ON REMOTE SENSING, ENVIRONMENT AND TRANSPORTATION ENGINEERING (RSETE 2013), 2013, 31 : 906 - 909
  • [48] A 4D Basis and Sampling Scheme for the Tensor Encoded Multi-Dimensional Diffusion MRI Signal
    Bates, Alice P.
    Daducci, Alessandro
    Sadeghi, Parastoo
    Caruyer, Emmanuel
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 790 - 794
  • [49] On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge
    De Luca, Alberto
    Ianus, Andrada
    Leemans, Alexander
    Palombo, Marco
    Shemesh, Noam
    Zhang, Hui
    Alexander, Daniel C.
    Nilsson, Markus
    Froeling, Martijn
    Biessels, Geert-Jan
    Zucchelli, Mauro
    Frigo, Matteo
    Albay, Enes
    Sedlar, Sara
    Alimi, Abib
    Deslauriers-Gauthier, Samuel
    Deriche, Rachid
    Fick, Rutger
    Afzali, Maryam
    Pieciak, Tomasz
    Bogusz, Fabian
    Aja-Fernandez, Santiago
    Ozarslan, Evren
    Jones, Derek K.
    Chen, Haoze
    Jin, Mingwu
    Zhang, Zhijie
    Wang, Fengxiang
    Nath, Vishwesh
    Parvathaneni, Prasanna
    Morez, Jan
    Sijbers, Jan
    Jeurissen, Ben
    Fadnavis, Shreyas
    Endres, Stefan
    Rokem, Ariel
    Garyfallidis, Eleftherios
    Sanchez, Irina
    Prchkovska, Vesna
    Rodrigues, Paulo
    Landman, Bennet A.
    Schilling, Kurt G.
    [J]. NEUROIMAGE, 2021, 240
  • [50] Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field
    Veneroni, Marco
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (02) : 849 - 868