Utility of Multi-Modal MRI for Differentiating of Parkinson's Disease and Progressive Supranuclear Palsy Using Machine Learning

被引:31
作者
Talai, Aron S. [1 ]
Sedlacik, Jan [2 ]
Boelmans, Kai [3 ,4 ]
Forkert, Nils D. [1 ]
机构
[1] Univ Calgary, Dept Radiol, Calgary, AB, Canada
[2] Univ Med Ctr Hamburg Eppendorf, Dept Diagnost & Intervent Neuroradiol, Hamburg, Germany
[3] Univ Hosp Wurzburg, Dept Neurol, Wurzburg, Germany
[4] Klinikum Bremerhaven Reinkenheide, Dept Neurol, Bremerhaven, Germany
来源
FRONTIERS IN NEUROLOGY | 2021年 / 12卷
关键词
machine learning; magnetic resonance imaging; computer-assisted image analysis; Parkinson' s disease; progressive supranuclear palsy; CLINICAL-DIAGNOSIS; BRAIN IRON; CRITERIA; ATROPHY; VARIANT;
D O I
10.3389/fneur.2021.648548
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Patients with Parkinson's disease (PD) and progressive supranuclear palsy Richardson's syndrome (PSP-RS) often show overlapping clinical features, leading to misdiagnoses. The objective of this study was to investigate the feasibility and utility of using multi-modal MRI datasets for an automatic differentiation of PD patients, PSP-RS patients, and healthy control (HC) subjects. Material and Methods: T1-weighted, T2-weighted, and diffusion-tensor (DTI) MRI datasets from 45 PD patients, 20 PSP-RS patients, and 38 HC subjects were available for this study. Using an atlas-based approach, regional values of brain morphology (T1-weighted), brain iron metabolism (T2-weighted), and microstructural integrity (DTI) were measured and employed for feature selection and subsequent classification using combinations of various established machine learning methods. Results: The optimal machine learning model using regional morphology features only achieved a classification accuracy of 65% (67/103 correct classifications) differentiating PD patients, PSP-RS patients, and HC subjects. The optimal machine learning model using only quantitative T2 values performed slightly better and achieved an accuracy of 75.7% (78/103). The optimal classifier using DTI features alone performed considerably better with 95.1% accuracy (98/103). The optimal multi-modal classifier using all features also achieved an accuracy of 95.1% but required more features and achieved a slightly lower F1-score compared to the optimal model using DTI features alone. Conclusion: Machine learning models using multi-modal MRI perform significantly better than uni-modal machine learning models using morphological parameters based on T1-weighted MRI datasets alone or brain iron metabolism markers based on T2-weighted MRI datasets alone. However, machine learnig models using regional brain microstructural integrity metrics computed from DTI datasets perform similar to the optimal multi-modal machine learning model. Thus, given the results from this study cohort, it appears that morphology and brain iron metabolism markers may not provide additional value for classification compared to using DTI metrics alone.
引用
收藏
页数:11
相关论文
共 44 条
  • [11] Whole-Brain Atrophy Rate in Idiopathic Parkinson's Disease, Multiple System Atrophy, and Progressive Supranuclear Palsy
    Guevara, C.
    Bulatova, K.
    Barker, G. J.
    Gonzalez, G.
    Crossley, N.
    Kempton, M. J.
    [J]. PARKINSONS DISEASE, 2016, 2016
  • [12] Hall Mark, 2009, SIGKDD EXPLORATIONS, V11, P10, DOI DOI 10.1145/1656274.1656278
  • [13] Individual Detection of Patients with Parkinson Disease using Support Vector Machine Analysis of Diffusion Tensor Imaging Data: Initial Results
    Haller, S.
    Badoud, S.
    Nguyen, D.
    Garibotto, V.
    Lovblad, K. O.
    Burkhard, P. R.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2012, 33 (11) : 2123 - 2128
  • [14] Clinical Diagnosis of Progressive Supranuclear Palsy: The Movement Disorder Society Criteria
    Hoeglinger, Guenter U.
    Respondek, Gesine
    Stamelou, Maria
    Kurz, Carolin
    Josephs, Keith A.
    Lang, Anthony E.
    Mollenhauer, Brit
    Mueller, Ulrich
    Nilsson, Christer
    Whitwell, Jennifer L.
    Arzberger, Thomas
    Englund, Elisabet
    Gelpi, Ellen
    Giese, Armin
    Irwin, David J.
    Meissner, Wassilios G.
    Pantelyat, Alexander
    Rajput, Alex
    van Swieten, John C.
    Troakes, Claire
    Antonini, Angelo
    Bhatia, Kailash P.
    Bordelon, Yvette
    Compta, Yaroslau
    Corvol, Jean-Christophe
    Colosimo, Carlo
    Dickson, Dennis W.
    Dodel, Richard
    Ferguson, Leslie
    Grossman, Murray
    Kassubek, Jan
    Krismer, Florian
    Levin, Johannes
    Lorenzl, Stefan
    Morris, Huw R.
    Nestor, Peter
    Oertel, Wolfgang H.
    Poewe, Werner
    Rabinovici, Gil
    Rowe, James B.
    Schellenberg, Gerard D.
    Seppi, Klaus
    van Eimeren, Thilo
    Wenning, Gregor K.
    Boxer, Adam L.
    Golbe, Lawrence I.
    Litvan, Irene
    [J]. MOVEMENT DISORDERS, 2017, 32 (06) : 853 - 864
  • [15] ACCURACY OF CLINICAL-DIAGNOSIS OF IDIOPATHIC PARKINSONS-DISEASE - A CLINICOPATHOLOGICAL STUDY OF 100 CASES
    HUGHES, AJ
    DANIEL, SE
    KILFORD, L
    LEES, AJ
    [J]. JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 1992, 55 (03) : 181 - 184
  • [16] Fast, automated, N-dimensional phase-unwrapping algorithm
    Jenkinson, M
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2003, 49 (01) : 193 - 197
  • [17] Brain Iron Accumulation in Atypical Parkinsonian Syndromes: in vivo MRI Evidences for Distinctive Patterns
    Lee, Jae-Hyeok
    Lee, Myung-Sik
    [J]. FRONTIERS IN NEUROLOGY, 2019, 10
  • [18] Quantitative assessment of subcortical atrophy and iron content in progressive supranuclear palsy and parkinsonian variant of multiple system atrophy
    Lee, Jae-Hyeok
    Han, Yong-Hee
    Kang, Bok-Man
    Mun, Chi-Woong
    Lee, Sang-Jae
    Baik, Seung-Kug
    [J]. JOURNAL OF NEUROLOGY, 2013, 260 (08) : 2094 - 2101
  • [19] Parkinson's disease: diagnostic utility of volumetric imaging
    Lin, Wei-Che
    Chou, Kun-Hsien
    Lee, Pei-Lin
    Tsai, Nai-Wen
    Chen, Hsiu-Ling
    Hsu, Ai-Ling
    Chen, Meng-Hsiang
    Huang, Yung-Cheng
    Lin, Ching-Po
    Lu, Cheng-Hsien
    [J]. NEURORADIOLOGY, 2017, 59 (04) : 367 - 377
  • [20] Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): Report of the NINDS-SPSP International Workshop
    Litvan, I
    Agid, Y
    Calne, D
    Campbell, G
    Dubois, B
    Duvoisin, RC
    Goetz, CG
    Golbe, LI
    Grafman, J
    Growdon, JH
    Hallett, M
    Jankovic, J
    Quinn, NP
    Tolosa, E
    Zee, DS
    Chase, TN
    FitzGibbon, EJ
    Hall, Z
    Juncos, J
    Nelson, KB
    Oliver, E
    Pramstaller, P
    Reich, SG
    Verny, M
    [J]. NEUROLOGY, 1996, 47 (01) : 1 - 9