Using text mining and sentiment analysis for online forums hotspot detection and forecast

被引:292
|
作者
Li, Nan [2 ]
Wu, Desheng Dash [1 ,3 ]
机构
[1] Univ Toronto, RiskLab, Toronto, ON M5S 1A1, Canada
[2] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[3] Reykjavik Univ, Reykjavik, Iceland
关键词
Text mining; Sentiment analysis; Cluster analysis; Online sports forums; Dynamic interacting network analysis; Hotspot detection; Machine learning; Support vector machine; SEQUENCE MOTIFS; CLASSIFICATION;
D O I
10.1016/j.dss.2009.09.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Text sentiment analysis, also referred to as emotional polarity computation, has become a flourishing frontier in the text mining community. This paper studies online forums hotspot detection and forecast using sentiment analysis and text mining approaches. First, we create an algorithm to automatically analyze the emotional polarity of a text and to obtain a value for each piece of text. Second, this algorithm is combined with K-means clustering and support vector machine (SVM) to develop unsupervised text mining approach. We use the proposed text mining approach to group the forums into various clusters. with the center of each representing a hotspot forum within the current time span. The data sets used in our empirical studies are acquired and formatted from Sina sports forums, which spans a range of 31 different topic forums and 220,053 posts. Experimental results demonstrate that SVM forecasting achieves highly consistent results with K-means clustering. The top 10 hotspot forums listed by SVM forecasting resembles 80% of K-means clustering results. Both SVM and K-means achieve the same results for the top 4 hotspot forums of the year. (c) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:354 / 368
页数:15
相关论文
共 50 条
  • [1] Sentiment Analysis in Online Reviews Classification using Text Mining Techniques
    Agueda, M.
    Rita, P.
    Guerreiro, P.
    2019 14TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI), 2019,
  • [2] Improving Service Quality Using Text Mining and Sentiment Analysis of Online Reviews
    Chalupa, Stepan
    Petricek, Martin
    Chadt, Karel
    QUALITY-ACCESS TO SUCCESS, 2021, 22 (182): : 46 - 49
  • [3] A Text Mining and Multidimensional Sentiment Analysis of Online Restaurant Reviews
    Gan, Qiwei
    Ferns, Bo H.
    Yu, Yang
    Jin, Lei
    JOURNAL OF QUALITY ASSURANCE IN HOSPITALITY & TOURISM, 2017, 18 (04) : 465 - 492
  • [4] 4-Fluoramphetamine in the Netherlands: Text-mining and sentiment analysis of internet forums
    Blankers, Matthijs
    van der Gouwe, Daan
    van Laar, Margriet
    INTERNATIONAL JOURNAL OF DRUG POLICY, 2019, 64 : 34 - 39
  • [5] Hierarchical classification in text mining for sentiment analysis of online news
    Jinyan Li
    Simon Fong
    Yan Zhuang
    Richard Khoury
    Soft Computing, 2016, 20 : 3411 - 3420
  • [6] Hierarchical classification in text mining for sentiment analysis of online news
    Li, Jinyan
    Fong, Simon
    Zhuang, Yan
    Khoury, Richard
    SOFT COMPUTING, 2016, 20 (09) : 3411 - 3420
  • [7] How to predict explicit recommendations in online reviews using text mining and sentiment analysis
    Guerreiro, Joao
    Rita, Paulo
    JOURNAL OF HOSPITALITY AND TOURISM MANAGEMENT, 2020, 43 : 269 - 272
  • [8] The Multimodal Sentiment Analysis of Online Product Marketing Information Using Text Mining and Big Data
    Fang, Zhuo
    Qian, Yufeng
    Su, Chang
    Miao, Yurong
    Li, Yanmin
    JOURNAL OF ORGANIZATIONAL AND END USER COMPUTING, 2022, 34 (01)
  • [9] Using Text Mining to Analyze User Forums
    Feldman, Ronen
    Fresko, Moshe
    Goldenberg, Jacob
    Netzer, Oded
    Ungar, Lyle
    2008 5TH INTERNATIONAL CONFERENCE ON SERVICE SYSTEMS AND SERVICE MANAGEMENT, VOLS 1 AND 2, 2008, : 684 - +
  • [10] Sentiment Analysis Surrounding Blepharoplasty in Online Health Forums
    Lu, Tracy J.
    Nguyen, Anne Xuan-Lan
    Trinh, Xuan-Vi
    Wu, Albert Y.
    PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN, 2022, 10 (03)