Asymptotics of block toeplitz determinants and the classical dimer model

被引:15
作者
Basor, Estelle L. [1 ]
Ehrhardt, Torsten
机构
[1] Calif Polytech State Univ San Luis Obispo, Dept Math, San Luis Obispo, CA 93407 USA
[2] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00220-007-0276-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compute the asymptotics of a block Toeplitz determinant which arises in the classical dimer model for the triangular lattice when considering the monomer-monomer correlation function. The model depends on a parameter interpolating between the square lattice (t = 0) and the triangular lattice (t = 1), and we obtain the asymptotics for 0 < t <= 1. For 0 < t < 1 we apply the Szego Limit Theorem for block Toeplitz determinants. The main difficulty is to evaluate the constant term in the asymptotics, which is generally given only in a rather abstract form.
引用
收藏
页码:427 / 455
页数:29
相关论文
共 21 条
[1]   On a Toeplitz determinant identity of Borodin and Okounkov [J].
Basor, EL ;
Widom, H .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 37 (04) :397-401
[2]   A fredholm determinant formula for Toeplitz determinants [J].
Borodin, A ;
Okounkov, A .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 37 (04) :386-396
[3]   One more proof of the Borodin-Okounkov formula for Toeplitz determinants [J].
Böttcher, A .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 41 (01) :123-125
[4]  
Bottcher A., 2006, SPRINGER MONOGRAPHS
[5]  
Burckel R. B., 1979, An Introduction to Classical Complex Analysis
[6]   A new algebraic approach to the Szego-Widom limit theorem [J].
Ehrhardt, T .
ACTA MATHEMATICA HUNGARICA, 2003, 99 (03) :233-261
[7]   A generalization of Pincus' formula and Toeplitz operator determinants [J].
Ehrhardt, T .
ARCHIV DER MATHEMATIK, 2003, 80 (03) :302-309
[8]   Classical dimers on the triangular lattice [J].
Fendley, P ;
Moessner, R ;
Sondhi, SL .
PHYSICAL REVIEW B, 2002, 66 (21) :1-14
[9]   STATISTICAL MECHANICS OF DIMERS ON A PLANE LATTICE .2. DIMER CORRELATIONS AND MONOMERS [J].
FISHER, ME ;
STEPHENSON, J .
PHYSICAL REVIEW, 1963, 132 (04) :1411-&
[10]   SCATTERING THEORY AND POLYNOMIALS ORTHOGONAL ON THE UNIT CIRCLE [J].
GERONIMO, JS ;
CASE, KM .
JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (02) :299-310