A unified semi-supervised dimensionality reduction framework for manifold learning

被引:43
作者
Chatpatanasiri, Ratthachat [1 ]
Kijsirikul, Boonserm [1 ]
机构
[1] Chulalongkorn Univ, Dept Comp Engn, Bangkok 10330, Thailand
关键词
Semi-supervised learning; Transductive learning; Spectral methods; Dimensionality reduction; Manifold learning; DISCRIMINANT; EXTRACTION;
D O I
10.1016/j.neucom.2009.10.024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a general framework of semi-supervised dimensionality reduction for manifold learning which naturally generalizes existing supervised and unsupervised learning frameworks which apply the spectral decomposition. Algorithms derived under our framework are able to employ both labeled and unlabeled examples and are able to handle complex problems where data form separate clusters of manifolds. Our framework offers simple views, explains relationships among existing frameworks and provides further extensions which can improve existing algorithms. Furthermore, a new semi-supervised kernelization framework called "KPCA trick" is proposed to handle non-linear problems. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1631 / 1640
页数:10
相关论文
共 50 条
  • [31] Manifold contraction for semi-supervised classification
    Hu EnLiang
    Chen SongCan
    Yin XueSong
    SCIENCE CHINA-INFORMATION SCIENCES, 2010, 53 (06) : 1170 - 1187
  • [32] Fault identification and dimensionality reduction method based on semi-supervised PCA-LPP manifold learning algorithm
    Zhang X.
    Tang L.
    Wang P.
    Deng S.
    Tang, Liwei (tom5157@163.com), 1600, Central South University of Technology (47): : 1559 - 1564
  • [33] Multiple view semi-supervised dimensionality reduction
    Hou, Chenping
    Zhang, Changshui
    Wu, Yi
    Nie, Feiping
    PATTERN RECOGNITION, 2010, 43 (03) : 720 - 730
  • [34] Semi-supervised dimensionality reduction for image retrieval
    Zhang, Bin
    Song, Yangqiu
    Yin, Wenjun
    Xie, Ming
    Dong, Jin
    Zhang, Changshui
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2008, PTS 1 AND 2, 2008, 6822
  • [35] A General Model for Semi-Supervised Dimensionality Reduction
    Yin, Xuesong
    Shu, Ting
    Huang, Qi
    2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 3552 - 3556
  • [36] Semi-Supervised Laplacian Eigenmaps for Dimensionality Reduction
    Zheng, Feng
    Chen, Na
    Li, Luoqing
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1 AND 2, 2008, : 843 - 849
  • [37] Trace ratio criterion based generalized discriminative learning for semi-supervised dimensionality reduction
    Zhao, Mingbo
    Zhang, Zhao
    Chow, Tommy W. S.
    PATTERN RECOGNITION, 2012, 45 (04) : 1482 - 1499
  • [38] Semi-Supervised Multi-Label Dimensionality Reduction Learning by Instance and Label Correlations
    Li, Runxin
    Du, Jiaxing
    Ding, Jiaman
    Jia, Lianyin
    Chen, Yinong
    Shang, Zhenhong
    MATHEMATICS, 2023, 11 (03)
  • [39] Noisy multi-label semi-supervised dimensionality reduction
    Mikalsen, Karl Oyvind
    Soguero-Ruiz, Cristina
    Bianchi, Filippo Maria
    Jenssen, Robert
    PATTERN RECOGNITION, 2019, 90 : 257 - 270
  • [40] Semi-supervised dimensionality reduction using pairwise equivalence constraints
    Cevikalp, Hakan
    Verbeek, Jakob
    Jurie, Frederic
    Klaser, Alexander
    VISAPP 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 1, 2008, : 489 - 496