A unified semi-supervised dimensionality reduction framework for manifold learning

被引:43
作者
Chatpatanasiri, Ratthachat [1 ]
Kijsirikul, Boonserm [1 ]
机构
[1] Chulalongkorn Univ, Dept Comp Engn, Bangkok 10330, Thailand
关键词
Semi-supervised learning; Transductive learning; Spectral methods; Dimensionality reduction; Manifold learning; DISCRIMINANT; EXTRACTION;
D O I
10.1016/j.neucom.2009.10.024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a general framework of semi-supervised dimensionality reduction for manifold learning which naturally generalizes existing supervised and unsupervised learning frameworks which apply the spectral decomposition. Algorithms derived under our framework are able to employ both labeled and unlabeled examples and are able to handle complex problems where data form separate clusters of manifolds. Our framework offers simple views, explains relationships among existing frameworks and provides further extensions which can improve existing algorithms. Furthermore, a new semi-supervised kernelization framework called "KPCA trick" is proposed to handle non-linear problems. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1631 / 1640
页数:10
相关论文
共 50 条
  • [1] A unified framework for semi-supervised dimensionality reduction
    Song, Yangqiu
    Nie, Feiping
    Zhang, Changshui
    Xiang, Shiming
    PATTERN RECOGNITION, 2008, 41 (09) : 2789 - 2799
  • [2] A novel semi-supervised dimensionality reduction framework for multi-manifold learning
    Guo, Xin
    Tie, Yun
    Qi, Lin
    Guan, Ling
    2015 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2015, : 191 - 196
  • [3] Relative manifold based semi-supervised dimensionality reduction
    Cai, Xianfa
    Wen, Guihua
    Wei, Jia
    Yu, Zhiwen
    FRONTIERS OF COMPUTER SCIENCE, 2014, 8 (06) : 923 - 932
  • [4] Relative manifold based semi-supervised dimensionality reduction
    Xianfa Cai
    Guihua Wen
    Jia Wei
    Zhiwen Yu
    Frontiers of Computer Science, 2014, 8 : 923 - 932
  • [5] A unified dimensionality reduction framework for semi-paired and semi-supervised multi-view data
    Chen, Xiaohong
    Chen, Songcan
    Xue, Hui
    Zhou, Xudong
    PATTERN RECOGNITION, 2012, 45 (05) : 2005 - 2018
  • [6] Learning a tensor subspace for semi-supervised dimensionality reduction
    Zhang, Zhao
    Ye, Ning
    SOFT COMPUTING, 2011, 15 (02) : 383 - 395
  • [7] Learning a tensor subspace for semi-supervised dimensionality reduction
    Zhao Zhang
    Ning Ye
    Soft Computing, 2011, 15 : 383 - 395
  • [8] Coupled dimensionality reduction and classification for supervised and semi-supervised multilabel learning
    Goenen, Mehmet
    PATTERN RECOGNITION LETTERS, 2014, 38 : 132 - 141
  • [9] A Framework for Semi-Supervised Clustering Based on Dimensionality Reduction
    Cui Peng
    Zhang Ru-bo
    FIRST INTERNATIONAL WORKSHOP ON DATABASE TECHNOLOGY AND APPLICATIONS, PROCEEDINGS, 2009, : 192 - +
  • [10] A unified framework for semi-supervised PU learning
    Hu, Haoji
    Sha, Chaofeng
    Wang, Xiaoling
    Zhou, Aoying
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2014, 17 (04): : 493 - 510