A variable separated ODE method for solving the triple sine-Gordon and the triple sinh-Gordon equations

被引:12
作者
Wazwaz, Abdul-Majid [1 ]
机构
[1] St Francis Xavier Univ, Dept Math & Comp Sci, Chicago, IL 60655 USA
关键词
D O I
10.1016/j.chaos.2006.01.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A variable separated ODE method is used for a reliable treatment of the triple sine-Gordon and the triple sinh-Gordon equations. Two distinct sets of travelling wave solutions, that possess distinct physical structures, are formally derived for each equation. The work introduces entirely new solutions and emphasizes the power of the method that can be used in problems with identical nonlinearities. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:703 / 710
页数:8
相关论文
共 15 条
[1]   On the numerical solution of the sine-Gordon equation .1. Integrable discretizations and homoclinic manifolds [J].
Ablowitz, MJ ;
Herbst, BM ;
Schober, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 126 (02) :299-314
[2]  
Fu ZT, 2004, Z NATURFORSCH A, V59, P933
[3]  
INFELD E, 1990, NONLINEAR WAVES SOLI
[4]   SOLITARY WAVE SOLUTIONS OF NONLINEAR-WAVE EQUATIONS [J].
MALFLIET, W .
AMERICAN JOURNAL OF PHYSICS, 1992, 60 (07) :650-654
[5]   The tanh method .2. Perturbation technique for conservative systems [J].
Malfliet, W ;
Hereman, W .
PHYSICA SCRIPTA, 1996, 54 (06) :569-575
[6]   The tanh method .1. Exact solutions of nonlinear evolution and wave equations [J].
Malfliet, W ;
Hereman, W .
PHYSICA SCRIPTA, 1996, 54 (06) :563-568
[7]   A MODEL UNIFIELD FIELD EQUATION [J].
PERRING, JK ;
SKYRME, THR .
NUCLEAR PHYSICS, 1962, 31 (04) :550-+
[8]  
Polyanin A., 2004, Handbook of Nonlinear Partial Differential Equations
[9]   A direct method for solving sine-Gordon type equations [J].
Sirendaoreji ;
Jiong, S .
PHYSICS LETTERS A, 2002, 298 (2-3) :133-139
[10]  
Wazwaz A.M., 2002, Partial differential equations: methods and applications