A Multidataset Assessment of Climatic Drivers and Uncertainties of Recent Trends in Evaporative Demand across the Continental United States

被引:28
作者
Albano, Christine M. [1 ]
Abatzoglou, John T. [2 ]
McEvoy, Daniel J. [3 ]
Huntington, Justin L. [1 ]
Morton, Charles G. [4 ]
Dettinger, Michael D. [5 ]
Ott, Thomas J. [1 ]
机构
[1] Desert Res Inst, Div Hydrol Sci, Reno, NV 89512 USA
[2] Univ Calif Merced, Management Complex Syst Dept, Merced, CA USA
[3] Desert Res Inst, Div Atmospher Sci, Reno, NV USA
[4] Desert Res Inst, Div Earth & Ecosyst Sci, Reno, NV USA
[5] Scripps Inst Oceanog, Calif Nevada Climate Applicat Program, La Jolla, CA USA
基金
美国海洋和大气管理局;
关键词
North America; Climate change; Evapotranspiration; Trends; VAPOR-PRESSURE DEFICIT; POTENTIAL EVAPOTRANSPIRATION; SURFACE HUMIDITY; DROUGHT; WILDFIRE; WATER; TEMPERATURE; REANALYSES; INCREASE; CLIMATOLOGY;
D O I
10.1175/JHM-D-21-0163.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Increased atmospheric evaporative demand has important implications for humans and ecosystems in water-scarce lands. While temperature plays a significant role in driving evaporative demand and its trend, other climate variables are also influential and their contributions to recent trends in evaporative demand are unknown. We address this gap with an assessment of recent (1980-2020) trends in annual reference evapotranspiration (ETo) and its drivers across the continental United States based on five gridded datasets. In doing so, we characterize the structural uncertainty of ETo trends and decompose the relative influences of temperature, wind speed, solar radiation, and humidity. Results highlight large and robust changes in ETo across much of the western United States, centered on the Rio Grande region where ETo increased 135-235 mm during 1980-2020. The largest uncertainties in ETo trends are in the central and eastern United States and surrounding the Upper Colorado River. Trend decomposition highlights the strong and widespread influence of temperature, which contributes to 57% of observed ETo trends, on average. ETo increases are mitigated by increases in specific humidity in non-water-limited regions, while small decreases in specific humidity and increases in wind speed and solar radiation magnify ETo increases across the West. Our results show increases in ETo across the West that are already emerging outside the range of variability observed 20-40 years ago. Our results suggest that twenty-first-century land and water managers need to plan for an already increasing influence of evaporative demand on water availability and wildfire risks. Significance StatementIncreased atmospheric thirst due to climate warming has the potential to decrease water availability and increase wildfire risks in water-scarce regions. Here, we identified how much atmospheric thirst has changed across the continental United States over the past 40 years, what climate variables are driving the change, and how consistent these changes are among five data sources. We found that atmospheric thirst is consistently emerging outside the range experienced in the late twentieth century in some western regions with 57% of the change driven by temperature. Importantly, we demonstrate that increased atmospheric thirst has already become a persistent forcing of western landscapes and water supplies toward drought and will be an essential consideration for land and water management planning going forward.
引用
收藏
页码:505 / 519
页数:15
相关论文
共 99 条
  • [71] Perspectives on the causes of exceptionally low 2015 snowpack in the western United States
    Mote, Philip W.
    Rupp, David E.
    Li, Sihan
    Sharp, Darrin J.
    Otto, Friederike
    Uhe, Peter F.
    Xiao, Mu
    Lettenmaier, Dennis P.
    Cullen, Heidi
    Allen, Myles R.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (20) : 10980 - 10988
  • [72] Quantitative Trend, Sensitivity and Contribution Analyses of Reference Evapotranspiration in some Arid Environments under Climate Change
    Nouri, Milad
    Homaee, Mehdi
    Bannayan, Mohammad
    [J]. WATER RESOURCES MANAGEMENT, 2017, 31 (07) : 2207 - 2224
  • [73] Wind speed trends over the contiguous United States
    Pryor, S. C.
    Barthelmie, R. J.
    Young, D. T.
    Takle, E. S.
    Arritt, R. W.
    Flory, D.
    Gutowski, W. J., Jr.
    Nunes, A.
    Roads, J.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114
  • [74] Climatology, Variability, and Trends in the US Vapor Pressure Deficit, an Important Fire-Related Meteorological Quantity*
    Seager, Richard
    Hooks, Allison
    Williams, A. Park
    Cook, Benjamin
    Nakamura, Jennifer
    Henderson, Naomi
    [J]. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2015, 54 (06) : 1121 - 1141
  • [75] SEN PK, 1968, J AM STAT ASSOC, V63, P1379
  • [76] Little change in global drought over the past 60 years
    Sheffield, Justin
    Wood, Eric F.
    Roderick, Michael L.
    [J]. NATURE, 2012, 491 (7424) : 435 - +
  • [77] Recent amplification of the North American winter temperature dipole
    Singh, Deepti
    Swain, Daniel L.
    Mankin, Justin S.
    Horton, Daniel E.
    Thomas, Leif N.
    Rajaratnam, Bala
    Diffenbaugh, Noah S.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2016, 121 (17) : 9911 - 9928
  • [78] Surface Solar Radiation in North America: A Comparison of Observations, Reanalyses, Satellite, and Derived Products
    Slater, Andrew G.
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2016, 17 (01) : 401 - 420
  • [79] Evapotranspiration intensifies over the conterminous United States
    Szilagyi, J
    Katul, GG
    Parlange, MB
    [J]. JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE, 2001, 127 (06): : 354 - 362
  • [80] The twenty-first century Colorado River hot drought and implications for the future
    Udall, Bradley
    Overpeck, Jonathan
    [J]. WATER RESOURCES RESEARCH, 2017, 53 (03) : 2404 - 2418