Unitary superalgebras with graded involution or superinvolution of polynomial growth

被引:5
作者
Costa, W. D. S. [1 ]
Ioppolo, A. [2 ]
dos Santos, R. B. [1 ]
Vieira, A. C. [1 ]
机构
[1] Univ Fed Minas Gerais, ICEx, Ave Antonio Carlos 6627, BR-31123970 Belo Horizonte, MG, Brazil
[2] Univ Estadual Campinas, IMECC, Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Polynomial identity; Graded involution; Superinvolution; Polynomial growth; Codimension; CODIMENSION GROWTH; ALGEBRAS; IDENTITIES; VARIETIES;
D O I
10.1016/j.jpaa.2021.106666
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study associative unitary superalgebras with graded involution or superinvolution having polynomial growth of the codimension sequence. The first goal is to prove that, for this kind of algebras, the codimension sequence is a polynomial with rational coefficients. Then we shall construct several superalgebras with graded involution or superinvolution realizing the smallest and the largest value of the leading term of such a polynomial. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 20 条
[1]   COCHARACTERS, CODIMENSIONS AND HILBERT SERIES OF THE POLYNOMIAL-IDENTITIES FOR 2X2 MATRICES WITH INVOLUTION [J].
DRENSKY, V ;
GIAMBRUNO, A .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1994, 46 (04) :718-733
[2]  
Drensky V., 2000, Free Algebras and PI-Algebras
[3]  
Drensky V., 1989, CONT MATH, V131, P285
[4]   Matrix algebras of polynomial codimension growth [J].
Giambruno, A. ;
La Mattina, D. ;
Petrogradsky, V. M. .
ISRAEL JOURNAL OF MATHEMATICS, 2007, 158 (01) :367-378
[5]  
Giambruno A, 2001, ALGEBR COLLOQ, V8, P33
[6]   Polynomial identities on superalgebras and almost polynomial growth [J].
Giambruno, A ;
Mishchenko, S ;
Zaicev, M .
COMMUNICATIONS IN ALGEBRA, 2001, 29 (09) :3787-3800
[7]   Superalgebras with Involution or Superinvolution and Almost Polynomial Growth of the Codimensions [J].
Giambruno, Antonio ;
Ioppolo, Antonio ;
La Mattina, Daniela .
ALGEBRAS AND REPRESENTATION THEORY, 2019, 22 (04) :961-976
[8]   Varieties of Algebras with Superinvolution of Almost Polynomial Growth [J].
Giambruno, Antonio ;
Ioppolo, Antonio ;
La Mattina, Daniela .
ALGEBRAS AND REPRESENTATION THEORY, 2016, 19 (03) :599-611
[9]   Identities of *-superalgebras and almost polynomial growth [J].
Giambruno, Antonio ;
dos Santos, Rafael Bezerra ;
Vieira, Ana Cristina .
LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (03) :484-501