MULTIPLE DIRICHLET SERIES INTERPOLATING BELL NUMBERS AND STIRLING NUMBERS

被引:0
作者
Tsumura, Hirofumi [1 ]
机构
[1] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Tokyo 1920397, Japan
基金
日本学术振兴会;
关键词
D O I
10.1216/RMJ-2010-40-3-1051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The number of ways that a set of n elements can be partitioned into nonempty subsets is called the nth Bell number. An interpolation Dirichlet series of Bell numbers is well-known classically. In this paper, as its generalization, we construct a certain multiple Dirichlet series which interpolates Bell numbers. As another example, we construct a multiple Dirichlet series which interpolates Stirling numbers of the second kind.
引用
收藏
页码:1051 / 1060
页数:10
相关论文
共 7 条
  • [1] Bell ET., 1934, Am Math Mon, V41, P411, DOI [DOI 10.1080/00029890.1934.11987615, 10.1080/00029890.1934.11987615]
  • [2] A new method of producing functional relations among multiple zeta-functions
    Matsumoto, Kohji
    Tsumura, Hirofumi
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2008, 59 : 55 - 83
  • [3] STANLEY RP, 1986, ENUMERATIVE COMBINAT
  • [4] Combinatorial relations for Euler-Zagier sums
    Tsumura, H
    [J]. ACTA ARITHMETICA, 2004, 111 (01) : 27 - 42
  • [5] TSUMURA H, SOME MULTIPLE DIRICH
  • [6] Weisstein EricW., BELL NUMBER
  • [7] MATH STUDENT